- home
- Advanced Search
- Energy Research
- medical and health sciences
- IT
- Neuroinformatics
- Energy Research
- medical and health sciences
- IT
- Neuroinformatics
description Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Marina Romeo; Rosanna Mancinelli; Mauro Ceccanti; Marco Fiore; Giovanni Laviola; Simona Rossi; Paola Tirassa;pmid: 20382450
Prenatal ethanol exposure produces severe changes in brain, liver, and kidney through mechanisms involving growth factors. These molecules regulate survival, differentiation, maintenance, and connectivity of brain, liver, and kidney cells. Despite the abundant available data on the short and mid-lasting effects of ethanol intoxication, only few data show the long-lasting damage induced by early ethanol administration. The aim of this study was to investigate changes in nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) in brain areas, liver, and kidney of 18-mo-old male mice exposed perinatally to ethanol at 11% vol or to red wine at the same ethanol concentration. The authors found that ethanol per se elevated NGF, BDNF, HGF, and VEGF measured by ELISA in brain limbic system areas. In the liver, early exposure to ethanol solution and red wine depleted BDNF and VEGF concentrations. In the kidney, red wine exposure only decreased VEGF. In conclusion, the present study shows that, in aged mice, early administration of ethanol solution induced long-lasting damage at growth factor levels in frontal cortex, hippocampus, and liver but not in kidney. Otherwise, in mice exposed to red wine, significant changes were observed in the liver and kidney but not in the hippocampus and frontal cortex. The brain differences in ethanol-induced toxicity when ethanol is administered alone or in red wine may be related to compounds with antioxidant properties present in the red wine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neurobiolaging.2010.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neurobiolaging.2010.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996Publisher:Elsevier BV Authors: Paola Palestini; Rosalba Gornati; Fausta Omodeo-Salè;pmid: 8734845
Rats of two different ages (2 and 7 months) were treated with an ethanol-containing liquid diet for 24 days and change of the ceramide composition of gangliosides were studied in the brain synaptosomal, microsomal and myelin fractions. Greater differences were observed in the younger age, where ethanol treatment caused a significant increase of C20:1 LCB in GM1 ganglioside of synaptosomes and microsomes and in GD1a of myelin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0741-8329(95)02059-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0741-8329(95)02059-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: M. Alfonsina Desiderio; Angela Sessa; Antonio Perin;pmid: 3103615
The effects of maternal ethanol consumption for 4 weeks before and throughout gestation on polyamine content and diamine oxidase activity of maternal, embryonal and fetal tissues are reported. At the 12th day of pregnancy, a decrease of putrescine in the liver of the mother and marked increases in putrescine, cadaverine and spermidine in embryos were observed. At day 18, putrescine and cadaverine diminished in maternal liver and placenta, and no changes in amine content in fetal liver and brain were found. At day 12, diamine oxidase activity increased in maternal liver and placenta, whereas it greatly diminished in embryos. At day 18, enzyme activity decreased in maternal liver, placenta, fetal liver and brain. These results indicate that chronic ethanol ingestion induces alterations in polyamine concentrations and metabolism in growing and developing tissues during pregnancy that might contribute to the adverse effect of ethanol on conceptual development.
Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91490-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91490-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Enrico, Paolo; Sirca, Donatella; Mereu, Maddalena; Peana, Alessandra Tiziana; Lintas, Alessandra; Golosio, Angela; Diana, Marco;pmid: 19070441
Acetaldehyde (ACD) has been postulated to mediate some of the neurobehavioral effects of ethanol (EtOH). In this study we sought to evaluate whether the stimulatory effects of EtOH on mesolimbic dopamine (DA) transmission are affected by the administration of ACD-sequestering agent D-penicillamine (Dp). To this end we studied the effect of EtOH and ACD in the rat mesoaccumbens pathway by in vivo microdialysis in the nucleus accumbens shell (NAccs), and by single cell extracellular recordings from antidromically identified mesoaccumbens DA neurons in the ventral tegmental area (VTA). Both EtOH (1g/kg) and ACD (20mg/kg) administration increased DA levels in the NAccs and increased the activity of mesoaccumbens DA neurons. Pretreatment with Dp (50mg/kg i.p. 1h before drug challenge) prevented both EtOH- and ACD-induced stimulation of the DA mesolimbic system without affecting morphine stimulatory actions. These observations add further support to the notion that EtOH-derived ACD stimulates the mesolimbic DA system and is essential in EtOH-induced stimulation of the DA mesoaccumbens system. We conclude that modulation of ACD bioavailability may influence the addictive profile of EtOH by decreasing its psychotropic effects and possibly leading the way to new pharmacological treatments of alcoholism.
UnissResearch arrow_drop_down Drug and Alcohol DependenceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2008.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UnissResearch arrow_drop_down Drug and Alcohol DependenceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2008.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Public Library of Science (PLoS) Funded by:NIH | Spatiotemporal Brain Imag...NIH| Spatiotemporal Brain Imaging of Alcohol Effects on Inhibitory ControlSheeva Azma; Lauren E. Beaton; Ksenija Marinkovic; Ksenija Marinkovic; Ksenija Marinkovic;Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI) and response levels (RI). Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15-25 Hz) frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4-7 Hz) were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored and regulated by the prefrontal cognitive control processes under conflict. They further confirm that the regulative top-down functions are particularly vulnerable to alcohol intoxication.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0191200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0191200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Bentham Science Publishers Ltd. Giampiero Ferraguti; Marco Fiore; Paola Tirassa; Roberto Coccurello; Stefania Ciafrè; Valentina Carito; Mauro Ceccanti;Background: It is now widely established that the devastating effects of prenatal alcohol exposure on the embryo and fetus development cause marked cognitive and neurobiological deficits in the newborns. The negative effects of the gestational alcohol use have been well documented and known for some time. However, also the subtle role of alcohol consumption by fathers prior to mating is drawing special attention. Objective: Both paternal and maternal alcohol exposure has been shown to affect the neurotrophins' signalling pathways in the brain and in target organs of ethanol intoxication. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are molecules playing a pivotal role in the survival, development and function of the peripheral and central nervous systems but also in the pathogenesis of developmental defects caused by alcohol exposure. Methods: New researches from the available literature and experimental data from our laboratory are presented in this review to offer the most recent findings regarding the effects of maternal and paternal prenatal ethanol exposure especially on the neurotrophins' signalling pathways. Results: NGF and BDNF changes play a subtle role in short- and long-lasting effects of alcohol in ethanol target tissues, including neuronal cell death and severe cognitive and physiological deficits in the newborns. Conclusion: The review suggests a possible therapeutic intervention based on the use of specific molecules with antioxidant properties in order to induce
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1570159x15666170825101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1570159x15666170825101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Valentina Bassareo; Valentina Bassareo; Roberto Frau; Riccardo Maccioni; Pierluigi Caboni; Cristina Manis; Alessandra T. Peana; Rossana Migheli; Simona Porru; Elio Acquas; Elio Acquas;Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks’ addictive liability, causes millions of deaths yearly. Ethanol’s addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol’s first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via μ opioid receptor (μOR) stimulation. In fact, inhibition of salsolinol’s generation in the pVTA or blockade of pVTA μORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol’s addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.675061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.675061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Gaetano Di Chiara; Marco Meloni; Elio Maria Gioachino Acquas;pmid: 8380771
Naltrindole, a specific delta-opioid antagonist, infused by reverse dialysis in the nucleus accumbens of freely moving rats completely prevented the increase in extracellular dopamine concentrations elicited in the nucleus accumbens by ethanol (1.0 g/kg i.p.) as well as by the delta-opioid receptor agonist [D-Ala2]deltorphin II (50 microM), also perfused by reverse dialysis, but not by cocaine (15 mg/kg s.c.). The results provide in vivo evidence for a critical role of delta-opioid receptors in the dopamine-releasing properties of ethanol in vivo.
European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0014-2999(93)90809-v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0014-2999(93)90809-v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Authors: Rueben A. Gonzales; Laurie M. Brown;pmid: 7869836
The present study investigated the interaction between glycine and ethanol on N-methyl-D-aspartate (NMDA)-stimulated neurotransmitter release in hippocampal, cerebrocortical, and striatal slices from rat brain. Some, but not all, previous studies have shown that glycine may reverse the inhibitory effect of ethanol on NMDA receptors. Hippocampal or cortical slices were prepared and prelabelled with [3H]norepinephrine, and striatal slices were labelled with [3H]dopamine. Stimulation of the slices with 500 microM NMDA for two minutes caused a significant release of [3H]neurotransmitter in each brain region above basal. Ethanol (60 mM) significantly inhibited the NMDA-stimulated release of neurotransmitter from all brain regions. Addition of glycine (0.3-3 microM) to the buffer bathing the slices had no effect on the inhibitory effect of ethanol in hippocampus or cortex. However, in striatal slices, 0.3 and 1.0 microM glycine added to the buffer reversed the inhibitory effect of ethanol on NMDA-stimulated [3H]dopamine release without having any effect on either basal or NMDA-stimulated release by itself. These results show that the interaction between ethanol and glycine varies in different brain regions. Therefore interpretation of the potential inhibitory effect of ethanol on NMDA receptor function in vivo should consider brain region and local concentrations of glycine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0024-3205(94)00489-f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0024-3205(94)00489-f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Friedbert Weiss; Marisa Roberto; Roberto Ciccocioppo; Hongwu Li; Serena Stopponi; Anna Maria Borruto;For several decades, genetically selected alcohol-preferring rats have been successfully used to mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing our understanding of the neurobiology of alcoholism and enabling pharmacological studies to evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To support the translational relevance of the findings that are obtained from msP rats and highlight important similarities to AUD patients, we also discuss the results of recent brain imaging studies. Finally, to demonstrate the importance of studying sex differences in animal models of AUD, we present original data that highlight behavioral differences in the response to alcohol in male and female rats. Female msP rats exhibited higher alcohol consumption compared with males. Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. These findings suggest that male and female msP rats both drink high amounts of alcohol to self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an important additional factor in the motivation to drink alcohol. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 ItalyPublisher:Elsevier BV Marina Romeo; Rosanna Mancinelli; Mauro Ceccanti; Marco Fiore; Giovanni Laviola; Simona Rossi; Paola Tirassa;pmid: 20382450
Prenatal ethanol exposure produces severe changes in brain, liver, and kidney through mechanisms involving growth factors. These molecules regulate survival, differentiation, maintenance, and connectivity of brain, liver, and kidney cells. Despite the abundant available data on the short and mid-lasting effects of ethanol intoxication, only few data show the long-lasting damage induced by early ethanol administration. The aim of this study was to investigate changes in nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) in brain areas, liver, and kidney of 18-mo-old male mice exposed perinatally to ethanol at 11% vol or to red wine at the same ethanol concentration. The authors found that ethanol per se elevated NGF, BDNF, HGF, and VEGF measured by ELISA in brain limbic system areas. In the liver, early exposure to ethanol solution and red wine depleted BDNF and VEGF concentrations. In the kidney, red wine exposure only decreased VEGF. In conclusion, the present study shows that, in aged mice, early administration of ethanol solution induced long-lasting damage at growth factor levels in frontal cortex, hippocampus, and liver but not in kidney. Otherwise, in mice exposed to red wine, significant changes were observed in the liver and kidney but not in the hippocampus and frontal cortex. The brain differences in ethanol-induced toxicity when ethanol is administered alone or in red wine may be related to compounds with antioxidant properties present in the red wine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neurobiolaging.2010.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neurobiolaging.2010.03.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996Publisher:Elsevier BV Authors: Paola Palestini; Rosalba Gornati; Fausta Omodeo-Salè;pmid: 8734845
Rats of two different ages (2 and 7 months) were treated with an ethanol-containing liquid diet for 24 days and change of the ceramide composition of gangliosides were studied in the brain synaptosomal, microsomal and myelin fractions. Greater differences were observed in the younger age, where ethanol treatment caused a significant increase of C20:1 LCB in GM1 ganglioside of synaptosomes and microsomes and in GD1a of myelin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0741-8329(95)02059-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0741-8329(95)02059-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: M. Alfonsina Desiderio; Angela Sessa; Antonio Perin;pmid: 3103615
The effects of maternal ethanol consumption for 4 weeks before and throughout gestation on polyamine content and diamine oxidase activity of maternal, embryonal and fetal tissues are reported. At the 12th day of pregnancy, a decrease of putrescine in the liver of the mother and marked increases in putrescine, cadaverine and spermidine in embryos were observed. At day 18, putrescine and cadaverine diminished in maternal liver and placenta, and no changes in amine content in fetal liver and brain were found. At day 12, diamine oxidase activity increased in maternal liver and placenta, whereas it greatly diminished in embryos. At day 18, enzyme activity decreased in maternal liver, placenta, fetal liver and brain. These results indicate that chronic ethanol ingestion induces alterations in polyamine concentrations and metabolism in growing and developing tissues during pregnancy that might contribute to the adverse effect of ethanol on conceptual development.
Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91490-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Average influence Average impulse Average Powered by BIP!
more_vert Biochemical and Biop... arrow_drop_down Biochemical and Biophysical Research CommunicationsArticle . 1987 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefBiochemical and Biophysical Research CommunicationsArticle . 1987Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0006-291x(87)91490-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 ItalyPublisher:Elsevier BV Enrico, Paolo; Sirca, Donatella; Mereu, Maddalena; Peana, Alessandra Tiziana; Lintas, Alessandra; Golosio, Angela; Diana, Marco;pmid: 19070441
Acetaldehyde (ACD) has been postulated to mediate some of the neurobehavioral effects of ethanol (EtOH). In this study we sought to evaluate whether the stimulatory effects of EtOH on mesolimbic dopamine (DA) transmission are affected by the administration of ACD-sequestering agent D-penicillamine (Dp). To this end we studied the effect of EtOH and ACD in the rat mesoaccumbens pathway by in vivo microdialysis in the nucleus accumbens shell (NAccs), and by single cell extracellular recordings from antidromically identified mesoaccumbens DA neurons in the ventral tegmental area (VTA). Both EtOH (1g/kg) and ACD (20mg/kg) administration increased DA levels in the NAccs and increased the activity of mesoaccumbens DA neurons. Pretreatment with Dp (50mg/kg i.p. 1h before drug challenge) prevented both EtOH- and ACD-induced stimulation of the DA mesolimbic system without affecting morphine stimulatory actions. These observations add further support to the notion that EtOH-derived ACD stimulates the mesolimbic DA system and is essential in EtOH-induced stimulation of the DA mesoaccumbens system. We conclude that modulation of ACD bioavailability may influence the addictive profile of EtOH by decreasing its psychotropic effects and possibly leading the way to new pharmacological treatments of alcoholism.
UnissResearch arrow_drop_down Drug and Alcohol DependenceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2008.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UnissResearch arrow_drop_down Drug and Alcohol DependenceArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.drugalcdep.2008.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Public Library of Science (PLoS) Funded by:NIH | Spatiotemporal Brain Imag...NIH| Spatiotemporal Brain Imaging of Alcohol Effects on Inhibitory ControlSheeva Azma; Lauren E. Beaton; Ksenija Marinkovic; Ksenija Marinkovic; Ksenija Marinkovic;Despite the subjective experience of being in full and deliberate control of our actions, our daily routines rely on a continuous and interactive engagement of sensory evaluation and response preparation streams. They unfold automatically and unconsciously and are seamlessly integrated with cognitive control which is mobilized by stimuli that evoke ambiguity or response conflict. Methods with high spatio-temporal sensitivity are needed to provide insight into the interplay between automatic and controlled processing. This study used anatomically-constrained MEG to examine the underlying neural dynamics in a flanker task that manipulated S-R incongruity at the stimulus (SI) and response levels (RI). Though irrelevant, flankers evoked automatic preparation of motor plans which had to be suppressed and reversed following the target presentation on RI trials. Event-related source power estimates in beta (15-25 Hz) frequency band in the sensorimotor cortex tracked motor preparation and response in real time and revealed switching from the incorrectly-primed to the correctly-responding hemisphere. In contrast, theta oscillations (4-7 Hz) were sensitive to the levels of incongruity as the medial and ventrolateral frontal cortices were especially activated by response conflict. These two areas are key to cognitive control and their integrated contributions to response inhibition and switching were revealed by phase-locked co-oscillations. These processes were pharmacologically manipulated with a moderate alcohol beverage or a placebo administered to healthy social drinkers. Alcohol selectively decreased accuracy to response conflict. It strongly attenuated theta oscillations during decision making and partly re-sculpted relative contributions of the frontal network without affecting the motor switching process subserved by beta band. Our results indicate that motor preparation is initiated automatically even when counterproductive but that it is monitored and regulated by the prefrontal cognitive control processes under conflict. They further confirm that the regulative top-down functions are particularly vulnerable to alcohol intoxication.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0191200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0191200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Bentham Science Publishers Ltd. Giampiero Ferraguti; Marco Fiore; Paola Tirassa; Roberto Coccurello; Stefania Ciafrè; Valentina Carito; Mauro Ceccanti;Background: It is now widely established that the devastating effects of prenatal alcohol exposure on the embryo and fetus development cause marked cognitive and neurobiological deficits in the newborns. The negative effects of the gestational alcohol use have been well documented and known for some time. However, also the subtle role of alcohol consumption by fathers prior to mating is drawing special attention. Objective: Both paternal and maternal alcohol exposure has been shown to affect the neurotrophins' signalling pathways in the brain and in target organs of ethanol intoxication. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are molecules playing a pivotal role in the survival, development and function of the peripheral and central nervous systems but also in the pathogenesis of developmental defects caused by alcohol exposure. Methods: New researches from the available literature and experimental data from our laboratory are presented in this review to offer the most recent findings regarding the effects of maternal and paternal prenatal ethanol exposure especially on the neurotrophins' signalling pathways. Results: NGF and BDNF changes play a subtle role in short- and long-lasting effects of alcohol in ethanol target tissues, including neuronal cell death and severe cognitive and physiological deficits in the newborns. Conclusion: The review suggests a possible therapeutic intervention based on the use of specific molecules with antioxidant properties in order to induce
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1570159x15666170825101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1570159x15666170825101308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Valentina Bassareo; Valentina Bassareo; Roberto Frau; Riccardo Maccioni; Pierluigi Caboni; Cristina Manis; Alessandra T. Peana; Rossana Migheli; Simona Porru; Elio Acquas; Elio Acquas;Abnormal consumption of ethanol, the ingredient responsible for alcoholic drinks’ addictive liability, causes millions of deaths yearly. Ethanol’s addictive potential is triggered through activation, by a still unknown mechanism, of the mesolimbic dopamine (DA) system, part of a key motivation circuit, DA neurons in the posterior ventral tegmental area (pVTA) projecting to the ipsilateral nucleus accumbens shell (AcbSh). The present in vivo brain microdialysis study, in dually-implanted rats with one probe in the pVTA and another in the ipsilateral or contralateral AcbSh, demonstrates this mechanism. As a consequence of the oral administration of a pharmacologically relevant dose of ethanol, we simultaneously detect a) in the pVTA, a substance, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), untraceable under control conditions, product of condensation between DA and ethanol’s first by-product, acetaldehyde; and b) in the AcbSh, a significant increase of DA release. Moreover, such newly generated salsolinol in the pVTA is responsible for increasing AcbSh DA release via μ opioid receptor (μOR) stimulation. In fact, inhibition of salsolinol’s generation in the pVTA or blockade of pVTA μORs prevents ethanol-increased ipsilateral, but not contralateral, AcbSh DA release. This evidence discloses the long-sought key mechanism of ethanol’s addictive potential and suggests the grounds for developing preventive and therapeutic strategies against abnormal consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.675061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.675061&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Gaetano Di Chiara; Marco Meloni; Elio Maria Gioachino Acquas;pmid: 8380771
Naltrindole, a specific delta-opioid antagonist, infused by reverse dialysis in the nucleus accumbens of freely moving rats completely prevented the increase in extracellular dopamine concentrations elicited in the nucleus accumbens by ethanol (1.0 g/kg i.p.) as well as by the delta-opioid receptor agonist [D-Ala2]deltorphin II (50 microM), also perfused by reverse dialysis, but not by cocaine (15 mg/kg s.c.). The results provide in vivo evidence for a critical role of delta-opioid receptors in the dopamine-releasing properties of ethanol in vivo.
European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0014-2999(93)90809-v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert European Journal of ... arrow_drop_down European Journal of PharmacologyArticle . 1993 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0014-2999(93)90809-v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Authors: Rueben A. Gonzales; Laurie M. Brown;pmid: 7869836
The present study investigated the interaction between glycine and ethanol on N-methyl-D-aspartate (NMDA)-stimulated neurotransmitter release in hippocampal, cerebrocortical, and striatal slices from rat brain. Some, but not all, previous studies have shown that glycine may reverse the inhibitory effect of ethanol on NMDA receptors. Hippocampal or cortical slices were prepared and prelabelled with [3H]norepinephrine, and striatal slices were labelled with [3H]dopamine. Stimulation of the slices with 500 microM NMDA for two minutes caused a significant release of [3H]neurotransmitter in each brain region above basal. Ethanol (60 mM) significantly inhibited the NMDA-stimulated release of neurotransmitter from all brain regions. Addition of glycine (0.3-3 microM) to the buffer bathing the slices had no effect on the inhibitory effect of ethanol in hippocampus or cortex. However, in striatal slices, 0.3 and 1.0 microM glycine added to the buffer reversed the inhibitory effect of ethanol on NMDA-stimulated [3H]dopamine release without having any effect on either basal or NMDA-stimulated release by itself. These results show that the interaction between ethanol and glycine varies in different brain regions. Therefore interpretation of the potential inhibitory effect of ethanol on NMDA receptor function in vivo should consider brain region and local concentrations of glycine.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0024-3205(94)00489-f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0024-3205(94)00489-f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Friedbert Weiss; Marisa Roberto; Roberto Ciccocioppo; Hongwu Li; Serena Stopponi; Anna Maria Borruto;For several decades, genetically selected alcohol-preferring rats have been successfully used to mimic and study alcohol use disorders (AUD). These rat lines have been instrumental in advancing our understanding of the neurobiology of alcoholism and enabling pharmacological studies to evaluate drug efficacy on alcohol drinking and relapse. Moreover, the results of these studies have identified genetic variables that are linked to AUD vulnerability. This is an up-to-date review that focuses on genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. To support the translational relevance of the findings that are obtained from msP rats and highlight important similarities to AUD patients, we also discuss the results of recent brain imaging studies. Finally, to demonstrate the importance of studying sex differences in animal models of AUD, we present original data that highlight behavioral differences in the response to alcohol in male and female rats. Female msP rats exhibited higher alcohol consumption compared with males. Furthermore, msP rats of both sexes exhibit higher anxiety- and depressive-like behaviors in the elevated plus maze and forced swim test, respectively, compared with unselected Wistar controls. Notably, voluntary alcohol drinking decreases foot-shock stress and depressive-like behavior in both sexes, whereas anxiety-like behavior in the elevated plus maze is attenuated only in males. These findings suggest that male and female msP rats both drink high amounts of alcohol to self-medicate negative affective symptoms. For females, this behavior may be driven by an attempt to treat stress and depressive-like conditions. For males, generalized anxiety appears to be an important additional factor in the motivation to drink alcohol. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuropharm.2020.108446&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu