- home
- Advanced Search
- Energy Research
- medical and health sciences
- 10. No inequality
- Neuroinformatics
- Energy Research
- medical and health sciences
- 10. No inequality
- Neuroinformatics
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Elsevier BV Uban, KA; Herting, MM; Wozniak, JR; Sowell, ER; CIFASD;Despite accumulating evidence from animal models demonstrating that prenatal alcohol exposure (PAE) results in life-long neuroendocrine dysregulation, very little is known on this topic among humans with fetal alcohol spectrum disorders (FASD). We expected that alterations in gonadal hormones might interfere with the typical development of white matter (WM) myelination, and in a sex-dependent manner, in human adolescents with FASD. In order to investigate this hypothesis, we used diffusion tensor imaging (DTI) to assess: 1) whether or not sex moderates the impact of PAE on WM microstructure; and 2) how gonadal hormones relate to alterations in WM microstructure in children and adolescents affected by PAE.61 youth (9 to 16 yrs.; 49% girls; 50% PAE) participated as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). DTI scans and passive drool samples were obtained to examine neurodevelopmental associations with testosterone (T) and dehydroepiandrosterone (DHEA) levels in boys and girls, and estradiol (E2) and progesterone (P) levels in girls. Tract-based spatial statistics were utilized to generate fractional anisotropy (FA) and mean diffusivity (MD) for 9 a priori WM regions of interest (ROIs).As predicted, alterations in FA were observed in adolescents with PAE relative to controls, and these differences varied by sex. Girls with PAE exhibited lower FA (Inferior fronto-occipital and Uncinate fasciculi) while boys with PAE exhibited higher FA (Callosal body, Cingulum, Corticospinal tract, Optic radiation, Superior longitudinal fasciculus) relative to age-matched controls. When gonadal hormone levels were examined in relation to DTI measures, additional group differences in FA were revealed, demonstrating that neuroendocrine factors are associated with PAE-related brain alterations.These findings provide human evidence that PAE relates to sex-specific differences in WM microstructure, and underlying alterations in gonadal hormone function may, in part, contribute to these effects. Determining PAE-effects on neuroendocrine function among humans is an essential first step towards developing novel clinical (e.g., assessment or intervention) tools that target hormone systems to improve on-going brain development among children and adolescents with FASD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psyneuen.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psyneuen.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Wiley Joe C. Christian; Sandra L. Morzorati; J. Sorbel; Sean O'Connor; Ting-Kai Li;A two‐dose alcohol challenge protocol was used to study genetic influences on the acute adaptation of the EEG to alcohol in 53 monozygotic and 38 same‐sex dizygotic Caucasian twin pairs averaging 30 years of age. Equal doses of alcohol were administered at 10:00 and 11:00 AM, yielding mean peak breath alcohol concentrations of 0.057% and 0.099%, respectively. Eyes‐closed, resting EEG was recorded four times: at baseline; on the ascending limb of the overall experiment at a breath alcohol concentration (BrAC) near 0.06%; on the descending limb at a BrAC near the value when the subject's EEG was obtained on the ascending limb; and, finally, when the BrAC fell to 0.02%. Genetic analyses of log‐transformed values of total spectral power (L10TSP) and spectral band power (L10SBP) were performed on EEG spectra averaged across all 17 scalp lead locations. After adjusting for body weight, a significant fraction of population variance in L10TSP was attributable to genetic influence: H2 values for TSP were 0.73, 0.72, and 0.73 at the three postalcohol EEG recordings, respectively. Similar findings pertained to each L10SBP at each postalcohol recording, except for the delta band. The change in postethanol EEG power was examined for evidence that genes influence acute adaptations in brain function. Descending‐minus‐ascending limb L10TSP was normalized by the individual's ascending limb L10TSP to minimize nonalcohol‐related effects that can influence both measurements. Earlier analyses of the same sample's initial EEG response to alcohol noted a substantial increase in the ascending limb EEG power, compared with baseline. Thus, positive values of the postethanol change denote a progression away from baseline attributable to acute sensitization to alcohol; negative values signify a return toward baseline values suggesting acute tolerance to alcohol. Genetic analysis of the normalized difference in L10TSP had a highly significant H2 value of 0.70, indicating that both acute tolerance and acute sensitization to alcohol may represent adaptations reflecting substantial heritable influence. Slightly smaller, but significant values of H2 for the normalized difference in L10SPB were observed for delta, alpha‐slow and beta‐slow frequency bands. In contrast, H2 for the differences between the final and ascending limb EEG power were not significant, except for the theta band. Thus, heritable drowsiness may have contributed to detection of genetic influences on acute adaptation, but represent a potential confound only in the theta band.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199903000-00017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199903000-00017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Francesc Ibáñez; Juan R. Ureña-Peralta; Pilar Costa-Alba; Jorge-Luis Torres; Francisco-Javier Laso; Miguel Marcos; Consuelo Guerri; María Pascual;Current studies evidence the role of miRNAs in extracellular vesicles (EVs) as key regulators of pathological processes, including neuroinflammation and neurodegeneration. As EVs can cross the blood–brain barrier, and EV miRNAs are very stable in peripheral circulation, we evaluated the potential gender differences in inflammatory-regulated miRNAs levels in human and murine plasma EVs derived from alcohol-intoxicated female and male adolescents, and whether these miRNAs could be used as biomarkers of neuroinflammation. We demonstrated that while alcohol intoxication lowers anti-inflammatory miRNA (mir-146a-5p, mir-21-5p, mir-182-5p) levels in plasma EVs from human and mice female adolescents, these EV miRNAs increased in males. In mice brain cortices, ethanol treatment lowers mir-146a-5p and mir-21-5p levels, while triggering a higher expression of inflammatory target genes (Traf6, Stat3, and Camk2a) in adolescent female mice. These results indicate, for the first time, that female and male adolescents differ as regards the ethanol effects associated with the inflammatory-related plasma miRNAs EVs profile, and suggest that female adolescents are more vulnerable than males to the inflammatory effects of binge alcohol drinking. These findings also support the view that circulating miRNAs in EVs could be useful biomarkers for screening ethanol-induced neuroinflammation and brain damage in adolescence.
International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms21186730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms21186730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Authors: Logrip, Marian L.; Milivojevic, Verica; Bertholomey, Megan L.; Torregrossa, Mary M.;Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together, the data reviewed herein, arising from a symposium titled "Sex matters in stress-alcohol interactions" presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both sexes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2018.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2018.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Wiley Authors: Francine E. Lancaster;pmid: 7943685
Gender differences in alcohol intake and response to alcohol may be influenced by basic variations in the organization and modulation of male and female brains. Although a number of genetic, social, environmental, and metabolic factors have been proposed to explain the gender differences observed in risk for alcoholism, alcohol intake, and medical consequences of excessive alcohol intake, very little attention has been given to the role of gender differences in the brain regarding alcohol use. Recent evidence documents the influence of neurosteroids on neurotransmitter activity in the brain and the impact of alcohol on neurosteroid levels. Neurosteroids are found in different levels in males and females during development and throughout life, depending on factors such as age, stage of development, estrous and menstrual cycles, and stress. This study discusses the hypothesis that many of the gender differences observed concerning alcohol use and misuse are determined by gender differences in the brain, which in turn differentially influence the behavioral and neurochemical responses of males and females to alcohol.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1994 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.1994.tb00940.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1994 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.1994.tb00940.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Guillaume Sescousse; Guillaume Sescousse; Maartje Luijten; Martine Groefsema; Gabry W. Mies; Janna Cousijn; Rutger C. M. E. Engels;AbstractAlcohol is mainly consumed in social settings, in which people often adapt their drinking behaviour to that of others, also called imitation of drinking. Yet, it remains unclear what drives this drinking in a social setting. In this study, we expected to see stronger brain and behavioural responses to social compared to non‐social alcohol cues, and these responses to be associated with drinking in a social setting. The sample consisted of 153 beer‐drinking males, aged 18–25 years. Brain responses to social alcohol cues were measured during an alcohol cue‐exposure task performed in an fMRI scanner. Behavioural responses to social alcohol cues were measured using a stimulus‐response compatibility task, providing an index of approach bias towards these cues. Drinking in a social setting was measured in a laboratory mimicking a bar environment. Specific brain responses to social alcohol cues were observed in the bilateral superior temporal sulcus and the left inferior parietal lobe. There was no approach bias towards social alcohol cues specifically; however, we did find an approach bias towards alcohol (versus soda) cues in general. Brain responses and approach bias towards social alcohol cues were unrelated and not associated with actual drinking. Thus, we found no support for a relation between drinking in a social setting on the one hand, and brain cue‐reactivity or behavioural approach biases to social alcohol cues on the other hand. This suggests that, in contrast to our hypothesis, drinking in a social setting may not be driven by brain or behavioural responses to social alcohol cues.
http://repub.eur.nl/... arrow_drop_down http://repub.eur.nl/pub/120619...Article . 2019Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEuropean Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert http://repub.eur.nl/... arrow_drop_down http://repub.eur.nl/pub/120619...Article . 2019Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEuropean Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:Elsevier BV Authors: Kazuma Ojima; Kinzo Matsumoto; Hiroshi Watanabe;pmid: 9125418
Social isolation stress has been demonstrated to decrease the hypnotic activity of ethanol in rodents. In this study, the role of central corticotropin-releasing factor (CRF) and GABA(A)/benzodiazepine (BZD) receptor systems in the social isolation stress-induced decrease in the hypnotic activity of ethanol in mice was investigated by examining the effect of alpha-helical CRF(9-41) (alpha hCRF) and flumazenil, antagonists of CRF and BZD receptors, respectively, on ethanol-induced sleep in group-housed and socially isolated mice. We also tested whether social isolation stress affects the ability of ethanol to enhance the GABA-induced 36Cl- influx into a synaptoneurosomal preparation of mouse forebrain. Social isolation stress significantly decreased both the ethanol (4 g/kg i.p.)-induced and pentobarbital (50 mg/kg i.p.)-induced sleeping times, while this stress had no effect on chloral hydrate (325 mg/kg i.p.)-induced sleep. The i.c.v. injection of alpha hCRF (6.5 nmol) and flumazenil (33 nmol) antagonized the social isolation stress-induced decrease in the ethanol sleep without affecting ethanol sleep in group-housed animals. Social isolation stress significantly attenuated the ability of GABA to stimulate 36Cl- influx but this stress had no effect on the ability of ethanol to enhance GABA-induced 36Cl- influx. These results suggest that the functional changes in central CRF and GABA(A)/BZD receptor systems are involved in the social isolation stress-induced decrease in the hypnotic activity of ethanol in mice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-8993(97)00080-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-8993(97)00080-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Wiley Authors: Agota Adam; Basalingappa L. Hungund; Basalingappa L. Hungund; Basalingappa L. Hungund; +5 AuthorsAgota Adam; Basalingappa L. Hungund; Basalingappa L. Hungund; Basalingappa L. Hungund; Csaba Vadasz; Csaba Vadasz; Istvan Szakall; Balapal S. Basavarajappa; Balapal S. Basavarajappa;pmid: 12562514
AbstractThe mechanisms underlying predisposition to alcohol abuse and alcoholism are poorly understood. In this study, we evaluated the role of cannabinoid (CB1) receptors in (i) voluntary alcohol consumption, and (ii) acute alcohol‐induced dopamine (DA) release in the nucleus accumbens, using mice that lack the CB1 receptor gene (CB1–/–). CB1–/– mice exhibited dramatically reduced voluntary alcohol consumption, and completely lacked alcohol‐induced DA release in the nucleus accumbens, as compared to wild‐type mice. The gender difference, with female mice consuming significantly more alcohol than wild‐type male mice, was observed in wild‐type mice, whereas this gender difference was nonexistent in CB1 mutant male and female mice. There was also a significant gender difference, with the wild‐type, heterozygous, and mutant females consuming significantly more liquid and food than wild‐type, heterozygous and mutant males. However, the total volume of fluid consumption and food intake did not differ between wild‐type, heterozygous, and mutant mice. These results strongly suggest that the CB1 receptor system plays an important role in regulating the positive reinforcing properties of alcohol.
Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 2003 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1471-4159.2003.01576.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 314 citations 314 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 2003 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1471-4159.2003.01576.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Francisco García-García; Jorge-Luis Torres; María Pascual; Consuelo Guerri; Pilar Costa-Alba; Francisco-Javier Laso; Miguel Marcos; Jorge Montesinos;doi: 10.1111/adb.12461
pmid: 27699959
AbstractHeavy binge drinking in adolescence can cause long‐term cognitive and behavioral dysfunctions. Recent experimental evidence indicates the participation of immune system activation in the effects of ethanol in the adolescent brain and suggests gender differences. The present study aims to assess plasma cytokine and chemokine levels in male and female adolescents and young adults during acute alcohol intoxication and to correlate these results with the toll‐like receptor 4 (TLR4) response. The potential role of the TLR4 signaling response was also assessed in plasma and prefrontal cortex (PFC) of adolescent wild‐type and TLR4‐knockout male and female mice with binge ethanol treatment. The results showed that alcohol intoxication increased the plasma levels of several cytokine and chemokine [interferon‐γ, interleukin (IL)‐10, IL‐17A, IL‐1β, IL‐2, IL‐4, IL‐6, IL‐8, fractalkine, monocyte chemoattractant protein 1 (MCP‐1) and macrophage inflammatory protein 1α (MIP‐1α)] and the upregulation of TLR4 mRNA levels occurred in intoxicated females, while elevation of colony‐stimulating factor was only observed in the plasma of males. In wild‐type female adolescent mice, intermittent ethanol treatment increased the levels of several cytokines (IL‐17A and IL‐1β) and chemokines (MCP‐1, MIP‐1α and fractalkine) in PFC and in serum (IL‐17A, MCP‐1 and MIP‐1α), but significant differences in the fractalkine levels in PFC were observed only in male mice. No changes in serum or prefrontal cortex cytokine and chemokine levels were noted in ethanol‐treated male or female TLR4‐knockout mice. Our findings revealed that females are more vulnerable than males to inflammatory effects of binge ethanol drinking and suggested that TLR4 is an important target of ethanol‐induced inflammation and neuroinflammation in adolescence.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAAddiction BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/adb.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAAddiction BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/adb.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:NIH | Translational Studies on ..., NIH | Ethanol and stress effect..., NIH | Synaptic Correlates of Vu... +1 projectsNIH| Translational Studies on Early-life Stress and Vulnerability to Alcohol Addiction ,NIH| Ethanol and stress effects on monoamine neurotransmission ,NIH| Synaptic Correlates of Vulnerability and Resilience to Alcohol Use Disorders ,NIH| MULTI-DISCIPLINARY TRAINING IN THE BIOLOGY OF ALCOHOLISMAuthors: Jamie H. Rose; Jeff L. Weiner; Anushree N. Karkhanis; Sara R. Jones;Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2016.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2016.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Elsevier BV Uban, KA; Herting, MM; Wozniak, JR; Sowell, ER; CIFASD;Despite accumulating evidence from animal models demonstrating that prenatal alcohol exposure (PAE) results in life-long neuroendocrine dysregulation, very little is known on this topic among humans with fetal alcohol spectrum disorders (FASD). We expected that alterations in gonadal hormones might interfere with the typical development of white matter (WM) myelination, and in a sex-dependent manner, in human adolescents with FASD. In order to investigate this hypothesis, we used diffusion tensor imaging (DTI) to assess: 1) whether or not sex moderates the impact of PAE on WM microstructure; and 2) how gonadal hormones relate to alterations in WM microstructure in children and adolescents affected by PAE.61 youth (9 to 16 yrs.; 49% girls; 50% PAE) participated as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). DTI scans and passive drool samples were obtained to examine neurodevelopmental associations with testosterone (T) and dehydroepiandrosterone (DHEA) levels in boys and girls, and estradiol (E2) and progesterone (P) levels in girls. Tract-based spatial statistics were utilized to generate fractional anisotropy (FA) and mean diffusivity (MD) for 9 a priori WM regions of interest (ROIs).As predicted, alterations in FA were observed in adolescents with PAE relative to controls, and these differences varied by sex. Girls with PAE exhibited lower FA (Inferior fronto-occipital and Uncinate fasciculi) while boys with PAE exhibited higher FA (Callosal body, Cingulum, Corticospinal tract, Optic radiation, Superior longitudinal fasciculus) relative to age-matched controls. When gonadal hormone levels were examined in relation to DTI measures, additional group differences in FA were revealed, demonstrating that neuroendocrine factors are associated with PAE-related brain alterations.These findings provide human evidence that PAE relates to sex-specific differences in WM microstructure, and underlying alterations in gonadal hormone function may, in part, contribute to these effects. Determining PAE-effects on neuroendocrine function among humans is an essential first step towards developing novel clinical (e.g., assessment or intervention) tools that target hormone systems to improve on-going brain development among children and adolescents with FASD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psyneuen.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 33 citations 33 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.psyneuen.2017.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Wiley Joe C. Christian; Sandra L. Morzorati; J. Sorbel; Sean O'Connor; Ting-Kai Li;A two‐dose alcohol challenge protocol was used to study genetic influences on the acute adaptation of the EEG to alcohol in 53 monozygotic and 38 same‐sex dizygotic Caucasian twin pairs averaging 30 years of age. Equal doses of alcohol were administered at 10:00 and 11:00 AM, yielding mean peak breath alcohol concentrations of 0.057% and 0.099%, respectively. Eyes‐closed, resting EEG was recorded four times: at baseline; on the ascending limb of the overall experiment at a breath alcohol concentration (BrAC) near 0.06%; on the descending limb at a BrAC near the value when the subject's EEG was obtained on the ascending limb; and, finally, when the BrAC fell to 0.02%. Genetic analyses of log‐transformed values of total spectral power (L10TSP) and spectral band power (L10SBP) were performed on EEG spectra averaged across all 17 scalp lead locations. After adjusting for body weight, a significant fraction of population variance in L10TSP was attributable to genetic influence: H2 values for TSP were 0.73, 0.72, and 0.73 at the three postalcohol EEG recordings, respectively. Similar findings pertained to each L10SBP at each postalcohol recording, except for the delta band. The change in postethanol EEG power was examined for evidence that genes influence acute adaptations in brain function. Descending‐minus‐ascending limb L10TSP was normalized by the individual's ascending limb L10TSP to minimize nonalcohol‐related effects that can influence both measurements. Earlier analyses of the same sample's initial EEG response to alcohol noted a substantial increase in the ascending limb EEG power, compared with baseline. Thus, positive values of the postethanol change denote a progression away from baseline attributable to acute sensitization to alcohol; negative values signify a return toward baseline values suggesting acute tolerance to alcohol. Genetic analysis of the normalized difference in L10TSP had a highly significant H2 value of 0.70, indicating that both acute tolerance and acute sensitization to alcohol may represent adaptations reflecting substantial heritable influence. Slightly smaller, but significant values of H2 for the normalized difference in L10SPB were observed for delta, alpha‐slow and beta‐slow frequency bands. In contrast, H2 for the differences between the final and ascending limb EEG power were not significant, except for the theta band. Thus, heritable drowsiness may have contributed to detection of genetic influences on acute adaptation, but represent a potential confound only in the theta band.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199903000-00017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefAlcoholism Clinical and Experimental ResearchArticle . 1999 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1097/00000374-199903000-00017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Francesc Ibáñez; Juan R. Ureña-Peralta; Pilar Costa-Alba; Jorge-Luis Torres; Francisco-Javier Laso; Miguel Marcos; Consuelo Guerri; María Pascual;Current studies evidence the role of miRNAs in extracellular vesicles (EVs) as key regulators of pathological processes, including neuroinflammation and neurodegeneration. As EVs can cross the blood–brain barrier, and EV miRNAs are very stable in peripheral circulation, we evaluated the potential gender differences in inflammatory-regulated miRNAs levels in human and murine plasma EVs derived from alcohol-intoxicated female and male adolescents, and whether these miRNAs could be used as biomarkers of neuroinflammation. We demonstrated that while alcohol intoxication lowers anti-inflammatory miRNA (mir-146a-5p, mir-21-5p, mir-182-5p) levels in plasma EVs from human and mice female adolescents, these EV miRNAs increased in males. In mice brain cortices, ethanol treatment lowers mir-146a-5p and mir-21-5p levels, while triggering a higher expression of inflammatory target genes (Traf6, Stat3, and Camk2a) in adolescent female mice. These results indicate, for the first time, that female and male adolescents differ as regards the ethanol effects associated with the inflammatory-related plasma miRNAs EVs profile, and suggest that female adolescents are more vulnerable than males to the inflammatory effects of binge alcohol drinking. These findings also support the view that circulating miRNAs in EVs could be useful biomarkers for screening ethanol-induced neuroinflammation and brain damage in adolescence.
International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms21186730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Molecular SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijms21186730&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Authors: Logrip, Marian L.; Milivojevic, Verica; Bertholomey, Megan L.; Torregrossa, Mary M.;Alcohol use disorder is a widespread mental illness characterized by periods of abstinence followed by recidivism, and stress is the primary trigger of relapse. Despite the higher prevalence of alcohol use disorder in males, the relationship between stress and behavioral features of relapse, such as craving, is stronger in females. Given the greater susceptibility of females to stress-related psychiatric disorders, understanding sexual dimorphism in the relationship between stress and alcohol use is essential to identifying better treatments for both male and female alcoholics. This review addresses sex differences in the impact of stressors on alcohol drinking and seeking in rodents and humans. As these behavioral differences in alcohol use and relapse originate from sexual dimorphism in neuronal function, the impact of stressors and alcohol, and their interaction, on molecular adaptations and neural activity in males and females will also be discussed. Together, the data reviewed herein, arising from a symposium titled "Sex matters in stress-alcohol interactions" presented at the Fourth Volterra Conference on Stress and Alcohol, will highlight the importance of identifying sex differences to improve treatments for comorbid stress and alcohol use disorder in both sexes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2018.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.alcohol.2018.02.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1994Publisher:Wiley Authors: Francine E. Lancaster;pmid: 7943685
Gender differences in alcohol intake and response to alcohol may be influenced by basic variations in the organization and modulation of male and female brains. Although a number of genetic, social, environmental, and metabolic factors have been proposed to explain the gender differences observed in risk for alcoholism, alcohol intake, and medical consequences of excessive alcohol intake, very little attention has been given to the role of gender differences in the brain regarding alcohol use. Recent evidence documents the influence of neurosteroids on neurotransmitter activity in the brain and the impact of alcohol on neurosteroid levels. Neurosteroids are found in different levels in males and females during development and throughout life, depending on factors such as age, stage of development, estrous and menstrual cycles, and stress. This study discusses the hypothesis that many of the gender differences observed concerning alcohol use and misuse are determined by gender differences in the brain, which in turn differentially influence the behavioral and neurochemical responses of males and females to alcohol.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1994 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.1994.tb00940.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 1994 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.1994.tb00940.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Guillaume Sescousse; Guillaume Sescousse; Maartje Luijten; Martine Groefsema; Gabry W. Mies; Janna Cousijn; Rutger C. M. E. Engels;AbstractAlcohol is mainly consumed in social settings, in which people often adapt their drinking behaviour to that of others, also called imitation of drinking. Yet, it remains unclear what drives this drinking in a social setting. In this study, we expected to see stronger brain and behavioural responses to social compared to non‐social alcohol cues, and these responses to be associated with drinking in a social setting. The sample consisted of 153 beer‐drinking males, aged 18–25 years. Brain responses to social alcohol cues were measured during an alcohol cue‐exposure task performed in an fMRI scanner. Behavioural responses to social alcohol cues were measured using a stimulus‐response compatibility task, providing an index of approach bias towards these cues. Drinking in a social setting was measured in a laboratory mimicking a bar environment. Specific brain responses to social alcohol cues were observed in the bilateral superior temporal sulcus and the left inferior parietal lobe. There was no approach bias towards social alcohol cues specifically; however, we did find an approach bias towards alcohol (versus soda) cues in general. Brain responses and approach bias towards social alcohol cues were unrelated and not associated with actual drinking. Thus, we found no support for a relation between drinking in a social setting on the one hand, and brain cue‐reactivity or behavioural approach biases to social alcohol cues on the other hand. This suggests that, in contrast to our hypothesis, drinking in a social setting may not be driven by brain or behavioural responses to social alcohol cues.
http://repub.eur.nl/... arrow_drop_down http://repub.eur.nl/pub/120619...Article . 2019Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEuropean Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert http://repub.eur.nl/... arrow_drop_down http://repub.eur.nl/pub/120619...Article . 2019Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefEuropean Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)European Journal of NeuroscienceArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejn.14574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1997Publisher:Elsevier BV Authors: Kazuma Ojima; Kinzo Matsumoto; Hiroshi Watanabe;pmid: 9125418
Social isolation stress has been demonstrated to decrease the hypnotic activity of ethanol in rodents. In this study, the role of central corticotropin-releasing factor (CRF) and GABA(A)/benzodiazepine (BZD) receptor systems in the social isolation stress-induced decrease in the hypnotic activity of ethanol in mice was investigated by examining the effect of alpha-helical CRF(9-41) (alpha hCRF) and flumazenil, antagonists of CRF and BZD receptors, respectively, on ethanol-induced sleep in group-housed and socially isolated mice. We also tested whether social isolation stress affects the ability of ethanol to enhance the GABA-induced 36Cl- influx into a synaptoneurosomal preparation of mouse forebrain. Social isolation stress significantly decreased both the ethanol (4 g/kg i.p.)-induced and pentobarbital (50 mg/kg i.p.)-induced sleeping times, while this stress had no effect on chloral hydrate (325 mg/kg i.p.)-induced sleep. The i.c.v. injection of alpha hCRF (6.5 nmol) and flumazenil (33 nmol) antagonized the social isolation stress-induced decrease in the ethanol sleep without affecting ethanol sleep in group-housed animals. Social isolation stress significantly attenuated the ability of GABA to stimulate 36Cl- influx but this stress had no effect on the ability of ethanol to enhance GABA-induced 36Cl- influx. These results suggest that the functional changes in central CRF and GABA(A)/BZD receptor systems are involved in the social isolation stress-induced decrease in the hypnotic activity of ethanol in mice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-8993(97)00080-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0006-8993(97)00080-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Wiley Authors: Agota Adam; Basalingappa L. Hungund; Basalingappa L. Hungund; Basalingappa L. Hungund; +5 AuthorsAgota Adam; Basalingappa L. Hungund; Basalingappa L. Hungund; Basalingappa L. Hungund; Csaba Vadasz; Csaba Vadasz; Istvan Szakall; Balapal S. Basavarajappa; Balapal S. Basavarajappa;pmid: 12562514
AbstractThe mechanisms underlying predisposition to alcohol abuse and alcoholism are poorly understood. In this study, we evaluated the role of cannabinoid (CB1) receptors in (i) voluntary alcohol consumption, and (ii) acute alcohol‐induced dopamine (DA) release in the nucleus accumbens, using mice that lack the CB1 receptor gene (CB1–/–). CB1–/– mice exhibited dramatically reduced voluntary alcohol consumption, and completely lacked alcohol‐induced DA release in the nucleus accumbens, as compared to wild‐type mice. The gender difference, with female mice consuming significantly more alcohol than wild‐type male mice, was observed in wild‐type mice, whereas this gender difference was nonexistent in CB1 mutant male and female mice. There was also a significant gender difference, with the wild‐type, heterozygous, and mutant females consuming significantly more liquid and food than wild‐type, heterozygous and mutant males. However, the total volume of fluid consumption and food intake did not differ between wild‐type, heterozygous, and mutant mice. These results strongly suggest that the CB1 receptor system plays an important role in regulating the positive reinforcing properties of alcohol.
Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 2003 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1471-4159.2003.01576.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 314 citations 314 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Neurochem... arrow_drop_down Journal of NeurochemistryArticle . 2003 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1046/j.1471-4159.2003.01576.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Francisco García-García; Jorge-Luis Torres; María Pascual; Consuelo Guerri; Pilar Costa-Alba; Francisco-Javier Laso; Miguel Marcos; Jorge Montesinos;doi: 10.1111/adb.12461
pmid: 27699959
AbstractHeavy binge drinking in adolescence can cause long‐term cognitive and behavioral dysfunctions. Recent experimental evidence indicates the participation of immune system activation in the effects of ethanol in the adolescent brain and suggests gender differences. The present study aims to assess plasma cytokine and chemokine levels in male and female adolescents and young adults during acute alcohol intoxication and to correlate these results with the toll‐like receptor 4 (TLR4) response. The potential role of the TLR4 signaling response was also assessed in plasma and prefrontal cortex (PFC) of adolescent wild‐type and TLR4‐knockout male and female mice with binge ethanol treatment. The results showed that alcohol intoxication increased the plasma levels of several cytokine and chemokine [interferon‐γ, interleukin (IL)‐10, IL‐17A, IL‐1β, IL‐2, IL‐4, IL‐6, IL‐8, fractalkine, monocyte chemoattractant protein 1 (MCP‐1) and macrophage inflammatory protein 1α (MIP‐1α)] and the upregulation of TLR4 mRNA levels occurred in intoxicated females, while elevation of colony‐stimulating factor was only observed in the plasma of males. In wild‐type female adolescent mice, intermittent ethanol treatment increased the levels of several cytokines (IL‐17A and IL‐1β) and chemokines (MCP‐1, MIP‐1α and fractalkine) in PFC and in serum (IL‐17A, MCP‐1 and MIP‐1α), but significant differences in the fractalkine levels in PFC were observed only in male mice. No changes in serum or prefrontal cortex cytokine and chemokine levels were noted in ethanol‐treated male or female TLR4‐knockout mice. Our findings revealed that females are more vulnerable than males to inflammatory effects of binge ethanol drinking and suggested that TLR4 is an important target of ethanol‐induced inflammation and neuroinflammation in adolescence.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAAddiction BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/adb.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 101 citations 101 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTAAddiction BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/adb.12461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:NIH | Translational Studies on ..., NIH | Ethanol and stress effect..., NIH | Synaptic Correlates of Vu... +1 projectsNIH| Translational Studies on Early-life Stress and Vulnerability to Alcohol Addiction ,NIH| Ethanol and stress effects on monoamine neurotransmission ,NIH| Synaptic Correlates of Vulnerability and Resilience to Alcohol Use Disorders ,NIH| MULTI-DISCIPLINARY TRAINING IN THE BIOLOGY OF ALCOHOLISMAuthors: Jamie H. Rose; Jeff L. Weiner; Anushree N. Karkhanis; Sara R. Jones;Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2016.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 103 citations 103 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2016.21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu