Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
965 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • health sciences
  • Neuroinformatics

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kevser Kusat Ol; Aysegul Oglakci Ilhan; Dilek Burukoglu; orcid Ferruh Yücel;
    Ferruh Yücel
    ORCID
    Harvested from ORCID Public Data File

    Ferruh Yücel in OpenAIRE
    +1 Authors

    We aim to study the effect of neurodegeneration on the brain of rat pups caused by prenatal and postnatal ethanol exposure with modified liquid diet to elucidate protective effects of betaine and omega-3 supplementation. When ethanol is consumed during prenatal and postnatal periods, it may result in fetal alcohol syndrome (FAS) in the offspring.Rats were divided into control, ethanol, ethanol + betaine, ethanol + omega-3, ethanol + omega-3 + betaine groups. The effect of betaine and omega-3 in response to ethanol-induced changes on the brain, by biochemical analyses cytochrome c, caspase-3, calpain, cathepsin B and L, DNA fragmentation, histological and morfometric methods were evaluated.Caspase-3, calpain, cathepsin B, and cytochrome c levels in ethanol group were significantly higher than control. Caspase-3, calpain levels were decreased in ethanol + betaine, ethanol + omega-3, and ethanol + omega-3 + betaine groups compared to ethanol group. Cathepsin B in ethanol + omega-3 + betaine group was decreased compared to ethanol, ethanol + betaine groups. Cathepsin L and DNA fragmentation were found not statistically significant. We found similar results in histological and morfometric parameters.We found that pre- and postnatal ethanol exposure is capable of triggering necrotic cell death in rat brains, omega-3, and betaine reduce neurodegeneration. Omega-3 and betaine may prove beneficial for neurodegeneration, particularly in preventing FAS.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Child s Nervous Syst...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Child s Nervous System
    Article . 2016 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Child s Nervous Syst...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Child s Nervous System
      Article . 2016 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Pequita Bludeau; Richard A. Deitrich; Xin-Sheng Deng;

    The purpose of the current study was to ascertain whether ethyl nitrite could be detected in vitro from the reaction of ethanol with peroxynitrite, as well as after administration of ethanol to mice. Ethyl nitrite analyte was determined by using gas chromatography--mass spectrometry with headspace analysis with the use of a solid-phase microextraction device. Peroxynitrite was allowed to react with ethanol under a variety of conditions in vitro. Ethyl nitrite was generated when peroxynitrite was allowed to react with ethanol. Male, inbred short-sleep mice were injected intraperitoneally with either ethanol [5.2 g/kg; 15.0% (weight/volume) ethanol in saline] or a 50:50 mixture of deuterium-labeled ethanol (D5-ethanol) and ethanol. Blood samples, as well as whole brain and liver sections, were obtained from mice 30 min later for determination of ethanol, D5-ethanol, ethyl nitrite, and deuterium-labeled ethyl nitrite (D5-ethyl nitrite). Time courses for the appearance of ethyl nitrite in blood samples, as well as in whole brain and liver sections, obtained from mice were carried out. After ethanol administration, ethyl nitrite was detected and quantitated in mouse blood, brain, and liver. A small fraction of ethyl nitrite was present. When a 50:50 mixture of ethanol and D5-ethanol was given to animals, both ethyl nitrite and D5-ethyl nitrite were found in blood and brain in approximately the same ratio as that of ethanol and D5-ethanol. The level of D5-ethyl nitrite in liver was more than twice that of ethyl nitrite, indicating a possible isotope effect in the metabolism of ethyl nitrite. Ethyl nitrite is a new metabolite of ethanol in vivo. The mechanism of ethyl nitrite formation is most likely the reaction of ethanol with peroxynitrite generated in vivo from nitric oxide.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 2005
    addClaim
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 2005
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John M. Littleton; Louisa Patrikiou-Caberos; orcid Marina A. Lynch;
    Marina A. Lynch
    ORCID
    Harvested from ORCID Public Data File

    Marina A. Lynch in OpenAIRE
    Christine Leroy; +1 Authors

    The aggregation of gel-filtered human platelets induced by A23187 is very sensitive to inhibition by ethanol. Similarly when platelets preloaded with [3H]5-hydroxytryptamine ([3H]5HT) are studied in a superfusion system under conditions where aggregation is likely (high platelet density, presence of Ca2+) the rate of release of [3H]5HT induced by A23187 is reduced by the presence of ethanol. However when platelet aggregation is less likely (low platelet density, absence of Ca2+) ethanol does not reduce the rate of [3H]5HT efflux induced by A23187 in superfused platelets. In addition, in contrast to the effects of ethanol on platelet aggregation, the transformation of human red cells to echinocytes induced by A23187 is accelerated by the presence of ethanol. Similarly the increased efflux of 3H from superfused rat striatal slices preloaded with [3H]dopamine which is produced by A23187 is potentiated by ethanol. It is concluded that the inhibitory effect of ethanol on the action of A23187 may be confined to platelet aggregation. This may be because the mechanisms of action of either A23187 or ethanol on platelet aggregation differ from those on other cell functions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biochemical Pharmacology
    Article . 1983 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biochemical Pharmacology
      Article . 1983 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Relative internal concentrations of Na+ and K+ are important in regulating (Na+,K+)‐ATPase in situ. Ethanol is known to inhibit (Na+,K+)‐ATPase and to reduce K+ affinity, but the concentrations required for these effects in vitro are large compared with those probably attainable in vivo. Yet, there is evidence suggesting that ethanol has physiologically relevant effects on (Na+,K+)‐ATPase. We have investigated the effects of ethanol on selectivity for Na+ versus K+. At 150 mM, ethanol had little effect on (Na+,K+)‐ATPase activity under the usual assay conditions, slightly (but nonsignificantly) reduced K+ affinity, and had no effect on extrapolated Na+ affinity in the absence of K+. However, ethanol had marked effects on cation selectivity, doubling the K, for K+ on Na+ affinity and halving the K, for Na+ on K+ affinity. These data show that ethanol, at concentrations too small for effects on (Na+,K+)‐ATPase activity under optimal assay conditions, can alter its responses to changes in Na+ or K+.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcoholism Clinical and Experimental Research
    Article . 1990 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    15
    citations15
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholism Clinical ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcoholism Clinical and Experimental Research
      Article . 1990 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Michael G. Gore; Peter J. Greasley; Lawrence G. Hunt;

    Inositol monophosphatase can be modified at two sites by pyrene maleimide. These sites have been identified as Cys141 and Cys218. Stoichiometric addition of pyrene maleimide allows the sole modification of Cys218. The fluorescence of the pyrene moiety on the modified protein can be excited directly or by resonance energy transfer. The fluorescence properties of the pyrene group on Cys218 allows the interaction of ligands with the enzyme to be monitored. This feature has allowed dissociation constants for various metal ions to be determined and allowed the formation of various enzyme/ligand complexes to be observed. These studies have demonstrated that Mg2+ is required to support Pi binding and that Li+ interacts with a post‐catalytic complex which is only formed in the forward reaction.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Biochemistry
    Article . 1994 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    25
    citations25
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Biochemistry
      Article . 1994 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Paola Palestini;
    Paola Palestini
    ORCID
    Harvested from ORCID Public Data File

    Paola Palestini in OpenAIRE
    Rosalba Gornati; Fausta Omodeo-Salè;

    Rats of two different ages (2 and 7 months) were treated with an ethanol-containing liquid diet for 24 days and change of the ceramide composition of gangliosides were studied in the brain synaptosomal, microsomal and myelin fractions. Greater differences were observed in the younger age, where ethanol treatment caused a significant increase of C20:1 LCB in GM1 ganglioside of synaptosomes and microsomes and in GD1a of myelin.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 1996 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 1996
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 1996 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 1996
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: John J. Lal; C. V. Sreeranjit Kumar; M. V. Suresh; M. Indira;

    The effects of a mega dose of ascorbic acid (AA) on alcohol induced peroxidative damages were investigated in guinea pigs. In the present study, four groups of male guinea pigs were maintained for 30 days as follows. (1) Control group (1 mg AA/100 g body wt); (2) Ethanol group (1 mg AA/100 g body wt. + 9 g ethanol/kg body wt); (3) AA group (25 mg AA/100 g body wt); (4) AA + ethanol group (25 mg AA/100 g body wt. + 9 g ethanol/kg). Results revealed that alcohol induced significant lipid peroxidation, since the lipid peroxidation products malondialdehyde (MDA), hydroperoxides and conjugated dienes were elevated. The activities of scavenging enzymes superoxide dismutase (SOD), catalase were reduced. However, supplementation of AA along with alcohol reduced the lipid peroxidation products in the liver and enhanced the activities of scavenging enzymes. Activities of glutathione peroxidase and reductase were also greater in guinea pigs given alcohol + AA in comparison with those given alcohol alone. Administration of ascorbic acid also reduced the activity of gamma-glutamyl transpeptidase (GGT), the marker enzyme of alcohol induced toxicity. The vitamin E level, which was reduced by alcohol intake, was raised by the co-administration of AA and alcohol. These studies suggest that a mega dose of AA helps in the prevention of alcohol induced oxidative stress by enhancing the antioxidant capacity and also by reducing the lipid peroxidation products.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Toxicology Lettersarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Toxicology Letters
    Article . 1999 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Toxicology Lettersarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Toxicology Letters
      Article . 1999 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: M. Alfonsina Desiderio; Angela Sessa; Antonio Perin;

    The effects of maternal ethanol consumption for 4 weeks before and throughout gestation on polyamine content and diamine oxidase activity of maternal, embryonal and fetal tissues are reported. At the 12th day of pregnancy, a decrease of putrescine in the liver of the mother and marked increases in putrescine, cadaverine and spermidine in embryos were observed. At day 18, putrescine and cadaverine diminished in maternal liver and placenta, and no changes in amine content in fetal liver and brain were found. At day 12, diamine oxidase activity increased in maternal liver and placenta, whereas it greatly diminished in embryos. At day 18, enzyme activity decreased in maternal liver, placenta, fetal liver and brain. These results indicate that chronic ethanol ingestion induces alterations in polyamine concentrations and metabolism in growing and developing tissues during pregnancy that might contribute to the adverse effect of ethanol on conceptual development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biochemical and Biophysical Research Communications
    Article . 1987 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    10
    citations10
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biochemical and Biophysical Research Communications
      Article . 1987 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Paula A. Daft; William E. Russell; Kathleen K. Sulik; Malcolm C. Johnston; +3 Authors

    Acute maternal ethanl (alcohol) administration induces different craniofacial anomalies in the offspring of experimental animals, depending on the gestational day of teratogen exposure. Previous studies in our laboratories have illustrated the sequence of developmental changes leading to the "typical" fetal alcohol syndrome (FAS) craniofacial phenotype which results from teratogen exposure during gastrulation. These facial features are accompanied by deficiencies in median forebrain derivatives. Ethanol teratogenesis at this time apparently results in a loss of midline territory of the embryonic disc with little effects on neural crest-dependent laterally derived structures including the visceral arches. Acute ethanol exposure in mice 1 1/2 days later, at a time when neural crest cells are populating the frontonasal prominence and the visceral arches, results in a craniofacial phenotype that is similar to that noted in the DiGeorge anomaly or sequence. Sequential scanning electron microscopic analysis in our laboratory of embryos exposed on day 8 1/2 have illustrated deficiencies in the developing facial prominences and the visceral arches. The developing forebrain and midbrain appear hypoplastic. We have also observed heart, great vessel, and thymus abnormalities in these fetuses. Histologic analyses indicate that a common pathogenetic basis for the above-mentioned (day 8 1/2-induced) fetal alcohol effects appears to be an interference with the integrity of the cranial (including occipital) neural crest. Other discrete cell populations may also be involved since we have observed abnormalities in other regions, including placodal and closing membrane tissues. This animal model provides evidence linking maternal ethanol abuse during the 3rd or 4th weeks of human gestation to the development in the conceptus of FAS or DiGeorge anomally craniofacial characteristics, respectively. As the DiGeorge anomaly has been noted in the offspring of alcoholic women, this animal model indicates that ethanol and/or its metabolites is, in these cases, the causative agent.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    American Journal of Medical Genetics
    Article . 1986 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim
    130
    citations130
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      American Journal of Medical Genetics
      Article . 1986 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wendy Cammer;

    Abstract When acetyl ethyl tetramethyl tetralin (AETT), at 10–50 μg/ml, was added to rat liver mitochondria respiring with succinate or with glutamate plus malate as substrate, the rate of mitochondrial respiration increased significantly after an initial lag period, of 2–3 min. AETT also stimulated respiration in the presence of oligomycin, and at higher concentrations of AETT a phase of strongly inhibited respiration followed an initial stimulatory phase. These observations suggest that AETT uncouples oxidative phosphorylation. A diketo derivative (DK) of tetramethyl tetralin also appears to be an uncoupling agent, according to those criteria, and both compounds uncoupled mitochondria from brain as well as liver. DK and many other uncoupling agents, such as hexachlorophene (HCP), produced an immediate burst of respiration, whereas the brief lag after addition of AETT was similar to that seen after addition of triethyltin (TET).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biochemical Pharmacology
    Article . 1980 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical Pharmaco...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biochemical Pharmacology
      Article . 1980 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim