- home
- Advanced Search
- Energy Research
- 2021-2025
- Netherlands Research Portal
- Energy Research
- 2021-2025
- Netherlands Research Portal
Research data keyboard_double_arrow_right Dataset 2024Publisher:The Discovery Collections Authors: Horton, Tammy; Serpell-Stevens, Amanda; Domedel, Georgina Valls; Bett, Brian James;doi: 10.15468/hejfyr
These data record the results of processing otter trawl catches (OTSB14; Merrett & Marshall, 1980) from the National Oceanography Centre (NOC, UK) long-term study of the Porcupine Abyssal Plain (PAP), including the PAP-Sustained Observatory time-series. The data concern catches recovered during the RRS Challenger cruise 135 in 1997. Billett, D.S.M. et al. (1998). RRS Challenger Cruise 135, 15 Oct-30 Oct 1997. BENGAL: High resolution temporal and spatial study of the BENthic biology and Geochemistry of a north-eastern Atlantic abyssal Locality. Southampton Oceanography Centre Cruise Report, No. 19, 49pp.| https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/ch135_97.pdf
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hejfyr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hejfyr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Latvian State Forest Research Institute \\"Silava\\";Field measurements based assessment of above and below ground biomass of the most common farm crops in Latvia, including carbon and nitrogen stock and CO2 input into soil with plant residues under the most common management systems. Organic and integrated farmings are separated. Biomass is expressed as total biomass of all plants growing in the area, not only main species. Data for less common species are extrapolated assuming similarity with similar species or using default factors provided by the IPCC guidelines and other literature sources. Data area partially published (references are provided in the description). Uncertainty, which is not included in the public data set, can be provided separately.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12820657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12820657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Mar 2023Publisher:Dryad Authors: Wolfe, Kennedy David; Desbiens, Amelia; Mumby, Peter;Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Lucas Moreau (11607577); Evelyne Thiffault (10700505); Dominic Cyr (4836624); Yan Boulanger (2909306);Dataset for the article: How can the forest sector maintain its mitigation potential in a changing climate ? Case studies of boreal and northern temperate forests in eastern Canada.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Moreira-Saporiti, Agustín; Teichberg, Mirta;We studied if functional traits related to resource preemption (light and inorganic nutrients) exert control on space preemption of tropical seagrass meadows. Additionally, we studied if space preemption changed under different eutrophication scenarios. We took seagrass abundance data to study space preemption, seagrass traits data to study their effect on space preemption and eutrophication indicators to evaluate the level of eutrophication at each site/sampling event. The data was collected in Unguja Island (Zanzibar Archipealgo, Tanzania) in seven sites/sampling events (Harbor, Chapwani, Changuu, Bweleo, Fumba, Mangroves and Marumbi). Each site/sampling event comprised a subtidal seagrass meadow (2-4 meters depth) of around 2500 square meters, delimited by the coastline and a fringing reef. The data was taken between the 26.09.2016 to the 05.10.2016. In each site/sampling event, five 50 meters transects were deployed perpendicular to the coast and paralel to each other, approximately separated by 50 meters. The areas enclosed beweeen the transects were names A, B, C and D. Macroalgae biomass was collected as an indicator of eutrophication. Macroalgae biomass was quantified along five 50-m transects per site/sampling event, set perpendicular to the coast and parallel to each other, separated by ~50 meters. We collected the macroalgae present in three random 0.25x0.25 meters quadrats per transect. The macroalgae samples were cleaned of sediments and rinsed with water. They were then dried at 50°C in a forced air oven until constant dry weight. The macroalgae biomass was calculated as the grams of dry weight divided by the area of the quadrat (grams of dry weight per square meter).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Authors: Viviane Cristina Heinzen da Silva (10631009); Marina C. M. Martins (5446598); Maria Juliana Calderan-Rodrigues (10631012); Anthony Artins (10631015); +6 AuthorsViviane Cristina Heinzen da Silva (10631009); Marina C. M. Martins (5446598); Maria Juliana Calderan-Rodrigues (10631012); Anthony Artins (10631015); Carolina Cassano Monte Bello (10631018); Saurabh Gupta (148526); Tiago J. P. Sobreira (7289051); Diego Mauricio Riaño-Pachón (10631021); Valéria Mafra (184749); Camila Caldana (76564);The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C 4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C 3 ), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::ab9ecde3503b99a26334b51be4b0b9c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::ab9ecde3503b99a26334b51be4b0b9c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:มหาวิทยาลัยธรรมศาสตร์ งานวิจัยนี้มีวัตถุประสงค์เพื่อ 1) ศึกษาความต้องการเรียนรู้การใช้เทคโนโลยี Internet of things และพลังงานแสงอาทิตย์ของเกษตรกรรุ่นใหม่ภาคกลาง 2) จัดทำฐานข้อมูลเกษตรกรรุ่นใหม่ภาคกลางในรูปแบบ Dashboard และ 3) พัฒนาเว็บไซต์รวบรวมแหล่งความรู้การใช้เทคโนโลยี Internet of things และพลังงานแสงอาทิตย์ ของเกษตรกรรุ่นใหม่ภาคกลาง โดยกลุ่มตัวอย่างที่ใช้รวบรวมข้อมูลจากผู้ตอบแบบสอบถามจำนวน 169 คน จากเกษตรกรรุ่นใหม่ภาคกลาง 9 จังหวัด ด้วยการเลือกกลุ่มตัวอย่างแบบเฉพาะเจาะจง เพื่อรวบรวมข้อมูลจากแบบสอบถาม Google Form และนำมาวิเคราะห์ข้อมูลโดยใช้ค่าเฉลี่ย ร้อยละ และส่วนเบี่ยงเบนมาตรฐาน ข้อมูลเชิงพื้นที่ และรวมข้อมูลสถิติในรูปแบบแดชบอร์ด Google Looker Studio พร้อมข้อมูลที่จัดเก็บไว้ใน Google Sheetผลการวิจัยพบว่าผู้ใช้ข้อมูลส่วนใหญ่เป็นเกษตรกรชายอายุระหว่าง 41-55 ปี มีวุฒิปริญญาตรี อาศัยอยู่ในจังหวัดสิงห์บุรี และมีรายได้ 100,001-250,000 บาทต่อปี การทำฟาร์มแบบผสมผสานที่ปลอดสารเคมีโดยใช้ระบบ Internet of things (IoT) เกษตรกลุ่มนี้มีความสนใจในพลังงานแสงอาทิตย์ เพื่อลดต้นทุนการผลิต เกษตรกรกลุ่มนี้มีความสามารถในการถ่ายทอดเทคโนโลยีความรู้ โดยเฉพาะอย่างยิ่งเกี่ยวกับการทำปุ๋ยหมัก ส่วนใหญ่ขายผลผลิตภายในชุมชนและเน้นการขนส่งด้วยตนเอง เพื่อลดต้นทุนค่าขนส่ง ผลจากแบบสอบถามในด้านความต้องการความรู้ ผู้วิจัยได้นำไปรวบรวมแหล่งข้อมูลด้านเทคโนโลยีการเกษตร 4.0 ในรูปแบบเว็บไซต์ WordPress และมีผู้ใช้งานค้นหาข้อมูล ส่วนใหญ่เป็นเพศหญิง อายุระหว่าง 21-30 ปี ทำงานในหน่วยงานราชการ/รัฐวิสาหกิจ และมีการศึกษาต่ำกว่าปริญญาตรีหรือปริญญาโท ความพึงพอใจของผู้ใช้ได้รับการวิเคราะห์ในสี่มิติ ได้แก่ ข้อมูล การใช้งาน รูปแบบ และการใช้ประโยชน์ และความพึงพอใจโดยรวมอยู่ในเกณฑ์ดี เว็บไซต์จึงมีส่วนช่วยเหลือเกษตรกรรุ่นใหม่ ในการศึกษาเพื่อนำเทคโนโลยีและวิธีการที่ทันสมัยมาใช้ในการปฏิบัติงาน
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14457/tu.the.2022.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14457/tu.the.2022.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 05 Mar 2024Publisher:Dryad Authors: Parra, Adriana; Greenberg, Jonathan;This README file was generated on 2024-03-04 by Adriana Parra. ## GENERAL INFORMATION 1\. Title of Dataset: **Climate-limited vegetation change in the conterminous United States of America** 2\. Author Information A. First Author Contact Information Name: Adriana Parra Institution: University of Nevada, Reno Address: Reno, NV USA Email: adrianaparra@unr.edu B. Co-author Contact Information Name: Jonathan Greenberg Institution: University of Nevada, Reno Address: Reno, NV USA Email: jgreenberg@unr.edu 3\. Coverage period of the dataset: 1986-2018 4\. Geographic location of dataset: Conterminous United States 5\. Description: This dataset contains the input and the resulting rasters for the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal. The dataset includes a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor. Additionally, the dataset includes a legend file for the identified climatic limiting factor rasters. ## SHARING/ACCESS INFORMATION 1\. Links to publications that cite or use the data: **Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204)** 2\. Links to other publicly accessible locations of the data: None 3\. Links/relationships to ancillary data sets: None 4\. Was data derived from another source? Yes A. If yes, list source(s): "Vegetative Lifeform Cover from Landsat SR for CONUS" product publicly available in the ORNL DAAC (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) TerraClimate data catalog publicly available at the website https://www.climatologylab.org/terraclimate.html 5\. Recommended citation for this dataset: Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204) ## DATA & FILE OVERVIEW This dataset contains 16 geotiff files, and one csv file. There are 4 geotiff files per each of the lifeform classes evaluated in this study: herbaceous, tree, shrub, and non-vegetation. The files corresponding to each lifeform class are indicated by the first two letters in the file name, HC indicates herbaceous cover, TC indicates tree cover, SC indicates shrub cover, and NC indicates non-vegetation cover. 1\. File List: a) Observed change: Trends of vegetation change between 1986 and 2018. b) Potential predict: Predicted rates of vegetation change form the climate limiting factor analysis. c) Potential observed difference: Difference between the potential and the observed vegetation rates of change. d) Limiting variable: Climate variable identified as the limiting factor for each pixel the conterminous United States. e) Legend of the Limiting variable raster All the geotiff files are stored as Float 32 type, and in CONUS Albers Equal Area coordinate system (EPSG:5070) The csv file included in the dataset is the legend for the limiting variable geotiff files. This file includes the name of the climate variable corresponding to each number in the limiting variable files, as well as information on the variable type and the corresponding time lag. 2\. Relationship between files, if important: None 3\. Additional related data collected that was not included in the current data package: None 4\. Are there multiple versions of the dataset? No A. If yes, name of file(s) that was updated: NA i. Why was the file updated? NA ii. When was the file updated? NA Input data We use the available data from the “Vegetative Lifeform Cover from Landsat SR for CONUS” product (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) to evaluate the changes in vegetation fractional cover. The information for the climate factors was derived from the TerraClimate data catalog (https://www.climatologylab.org/terraclimate.html). We downloaded data from this catalog for the period 1971 to 2018 for the following variables: minimum temperature (TMIN), precipitation (PPT), actual evapotranspiration (AET), potential evapotranspiration (PET), and climatic water deficit (DEF). Preprocessing of vegetation fractional cover data We resampled and aligned the maps of fractional cover using pixel averaging to the extent and resolution of the TerraClimate dataset (~ 4 km). Then, we calculated rates of lifeform cover change per pixel using the Theil-Sen slope analysis (Sen, 1968; Theil, 1992). Preprocessing of climate variables data To process the climate data, we defined a year time step as the months from July of one year to July of the next. Following this definition, we constructed annual maps of each climate variable for the years 1971 to 2018. The annual maps of each climate variable were further summarized per pixel, into mean and slope (calculated as the Theil-Sen slope) across one, two, three, four, five, ten-, and 15-year lags. Estimation of climate potential We constructed a final multilayer dataset of response and predictor variables for the CONUS including the resulting maps of fractional cover rate of change (four response variables), the mean and slope maps for the climate variables for all the time-lags (70 predictor variables), and the initial percent cover for each lifeform in the year 1986 (four predictor variables). We evaluated for each pixel in the CONUS which of the predictor variables produced the minimum potential rate of change in fractional cover for each lifeform class. To do that, we first calculated the 100% quantile hull of the distribution of each predictor variable against each response variable. To calculate the 100% quantile of the predictor variables’ distribution we divided the total range of each predictor variable into equal-sized bins. The size and number of bins were set specifically per variable due to differences in their data distribution. For each of the bins, we calculated the maximum value of the vegetation rate of change, which resulted in a lookup table with the lower and upper boundaries of each bin, and the associated maximum rate of change. We constructed a total of 296 lookup tables, one per lifeform class and predictor variable combination. The resulting lookup tables were used to construct spatially explicit maps of maximum vegetation rate of change from each of the predictor variable input rasters, and the final climate potential maps were constructed by stacking all the resulting maps per lifeform class and selecting for each pixel the minimum predicted rate of change and the predictor variable that produced that rate. Identifying climate-limited areas We defined climate-limited areas as the parts of the CONUS with little or no differences between the estimated climate potential and the observed rates of change in fractional cover. To identify these areas, we subtracted the raster of observed rates of change from the raster of climate potential for each lifeform class. In the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal, we evaluated the effects of climate conditions on vegetation composition and distribution in the conterminous United States (CONUS). To disentangle the direct effects of climate change from different non-climate factors, we applied "Liebig's law of the minimum" in a geospatial context, and determined the climate-limited potential for tree, shrub, herbaceous, and non-vegetation fractional cover change. We then compared these potential rates against observed change rates for the period 1986 to 2018 to identify areas of the CONUS where vegetation change is likely being limited by climatic conditions. This dataset contains the input and the resulting rasters for the study which include a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j0zpc86nm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j0zpc86nm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Publisher:The Discovery Collections Authors: Horton, Tammy; Serpell-Stevens, Amanda; Domedel, Georgina Valls; Bett, Brian James;doi: 10.15468/hejfyr
These data record the results of processing otter trawl catches (OTSB14; Merrett & Marshall, 1980) from the National Oceanography Centre (NOC, UK) long-term study of the Porcupine Abyssal Plain (PAP), including the PAP-Sustained Observatory time-series. The data concern catches recovered during the RRS Challenger cruise 135 in 1997. Billett, D.S.M. et al. (1998). RRS Challenger Cruise 135, 15 Oct-30 Oct 1997. BENGAL: High resolution temporal and spatial study of the BENthic biology and Geochemistry of a north-eastern Atlantic abyssal Locality. Southampton Oceanography Centre Cruise Report, No. 19, 49pp.| https://www.bodc.ac.uk/resources/inventories/cruise_inventory/reports/ch135_97.pdf
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hejfyr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hejfyr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Latvian State Forest Research Institute \\"Silava\\";Field measurements based assessment of above and below ground biomass of the most common farm crops in Latvia, including carbon and nitrogen stock and CO2 input into soil with plant residues under the most common management systems. Organic and integrated farmings are separated. Biomass is expressed as total biomass of all plants growing in the area, not only main species. Data for less common species are extrapolated assuming similarity with similar species or using default factors provided by the IPCC guidelines and other literature sources. Data area partially published (references are provided in the description). Uncertainty, which is not included in the public data set, can be provided separately.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12820657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12820657&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Mar 2023Publisher:Dryad Authors: Wolfe, Kennedy David; Desbiens, Amelia; Mumby, Peter;Patterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Lucas Moreau (11607577); Evelyne Thiffault (10700505); Dominic Cyr (4836624); Yan Boulanger (2909306);Dataset for the article: How can the forest sector maintain its mitigation potential in a changing climate ? Case studies of boreal and northern temperate forests in eastern Canada.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.16874710.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Authors: Moreira-Saporiti, Agustín; Teichberg, Mirta;We studied if functional traits related to resource preemption (light and inorganic nutrients) exert control on space preemption of tropical seagrass meadows. Additionally, we studied if space preemption changed under different eutrophication scenarios. We took seagrass abundance data to study space preemption, seagrass traits data to study their effect on space preemption and eutrophication indicators to evaluate the level of eutrophication at each site/sampling event. The data was collected in Unguja Island (Zanzibar Archipealgo, Tanzania) in seven sites/sampling events (Harbor, Chapwani, Changuu, Bweleo, Fumba, Mangroves and Marumbi). Each site/sampling event comprised a subtidal seagrass meadow (2-4 meters depth) of around 2500 square meters, delimited by the coastline and a fringing reef. The data was taken between the 26.09.2016 to the 05.10.2016. In each site/sampling event, five 50 meters transects were deployed perpendicular to the coast and paralel to each other, approximately separated by 50 meters. The areas enclosed beweeen the transects were names A, B, C and D. Macroalgae biomass was collected as an indicator of eutrophication. Macroalgae biomass was quantified along five 50-m transects per site/sampling event, set perpendicular to the coast and parallel to each other, separated by ~50 meters. We collected the macroalgae present in three random 0.25x0.25 meters quadrats per transect. The macroalgae samples were cleaned of sediments and rinsed with water. They were then dried at 50°C in a forced air oven until constant dry weight. The macroalgae biomass was calculated as the grams of dry weight divided by the area of the quadrat (grams of dry weight per square meter).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.932885&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Authors: Viviane Cristina Heinzen da Silva (10631009); Marina C. M. Martins (5446598); Maria Juliana Calderan-Rodrigues (10631012); Anthony Artins (10631015); +6 AuthorsViviane Cristina Heinzen da Silva (10631009); Marina C. M. Martins (5446598); Maria Juliana Calderan-Rodrigues (10631012); Anthony Artins (10631015); Carolina Cassano Monte Bello (10631018); Saurabh Gupta (148526); Tiago J. P. Sobreira (7289051); Diego Mauricio Riaño-Pachón (10631021); Valéria Mafra (184749); Camila Caldana (76564);The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C 4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C 3 ), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::ab9ecde3503b99a26334b51be4b0b9c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Smithsonian figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::ab9ecde3503b99a26334b51be4b0b9c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:มหาวิทยาลัยธรรมศาสตร์ งานวิจัยนี้มีวัตถุประสงค์เพื่อ 1) ศึกษาความต้องการเรียนรู้การใช้เทคโนโลยี Internet of things และพลังงานแสงอาทิตย์ของเกษตรกรรุ่นใหม่ภาคกลาง 2) จัดทำฐานข้อมูลเกษตรกรรุ่นใหม่ภาคกลางในรูปแบบ Dashboard และ 3) พัฒนาเว็บไซต์รวบรวมแหล่งความรู้การใช้เทคโนโลยี Internet of things และพลังงานแสงอาทิตย์ ของเกษตรกรรุ่นใหม่ภาคกลาง โดยกลุ่มตัวอย่างที่ใช้รวบรวมข้อมูลจากผู้ตอบแบบสอบถามจำนวน 169 คน จากเกษตรกรรุ่นใหม่ภาคกลาง 9 จังหวัด ด้วยการเลือกกลุ่มตัวอย่างแบบเฉพาะเจาะจง เพื่อรวบรวมข้อมูลจากแบบสอบถาม Google Form และนำมาวิเคราะห์ข้อมูลโดยใช้ค่าเฉลี่ย ร้อยละ และส่วนเบี่ยงเบนมาตรฐาน ข้อมูลเชิงพื้นที่ และรวมข้อมูลสถิติในรูปแบบแดชบอร์ด Google Looker Studio พร้อมข้อมูลที่จัดเก็บไว้ใน Google Sheetผลการวิจัยพบว่าผู้ใช้ข้อมูลส่วนใหญ่เป็นเกษตรกรชายอายุระหว่าง 41-55 ปี มีวุฒิปริญญาตรี อาศัยอยู่ในจังหวัดสิงห์บุรี และมีรายได้ 100,001-250,000 บาทต่อปี การทำฟาร์มแบบผสมผสานที่ปลอดสารเคมีโดยใช้ระบบ Internet of things (IoT) เกษตรกลุ่มนี้มีความสนใจในพลังงานแสงอาทิตย์ เพื่อลดต้นทุนการผลิต เกษตรกรกลุ่มนี้มีความสามารถในการถ่ายทอดเทคโนโลยีความรู้ โดยเฉพาะอย่างยิ่งเกี่ยวกับการทำปุ๋ยหมัก ส่วนใหญ่ขายผลผลิตภายในชุมชนและเน้นการขนส่งด้วยตนเอง เพื่อลดต้นทุนค่าขนส่ง ผลจากแบบสอบถามในด้านความต้องการความรู้ ผู้วิจัยได้นำไปรวบรวมแหล่งข้อมูลด้านเทคโนโลยีการเกษตร 4.0 ในรูปแบบเว็บไซต์ WordPress และมีผู้ใช้งานค้นหาข้อมูล ส่วนใหญ่เป็นเพศหญิง อายุระหว่าง 21-30 ปี ทำงานในหน่วยงานราชการ/รัฐวิสาหกิจ และมีการศึกษาต่ำกว่าปริญญาตรีหรือปริญญาโท ความพึงพอใจของผู้ใช้ได้รับการวิเคราะห์ในสี่มิติ ได้แก่ ข้อมูล การใช้งาน รูปแบบ และการใช้ประโยชน์ และความพึงพอใจโดยรวมอยู่ในเกณฑ์ดี เว็บไซต์จึงมีส่วนช่วยเหลือเกษตรกรรุ่นใหม่ ในการศึกษาเพื่อนำเทคโนโลยีและวิธีการที่ทันสมัยมาใช้ในการปฏิบัติงาน
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14457/tu.the.2022.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14457/tu.the.2022.587&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Authors: Jiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); +3 AuthorsJiming Hao (1407004); Dijuan Liang (9675638); Xi Lu (288663); Minghao Zhuang (2822963); Guang Shi (5048222); Chengyu Hu (6520775); Shuxiao Wang (1406992);It shows point estimates for national GHG emissions (total emissions and seven agricultural activities) from 1978 to 2016 in China.
figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down Smithsonian figshareDataset . 2021License: CC 0Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.13383053.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 19 May 2022Publisher:Dryad Authors: Rodriguez Alarcon, Slendy Julieth; Tamme, Riin; Perez Carmona, Carlos;Seeds of 52 species of herbaceous plants typical from European grassland ecosystems were obtained from a commercial supplier (Planta naturalis). When species germinated in Petri dishes the seedlings were then transplanted to plastic pots (11 x 11 x 12 cm height, 1L volume). Pots were filled with a mixture of a potting substrate (Biolan Murumuld) and sand. Pots were randomly placed in the greenhouse of the University of Tartu, Estonia. Then, we established monocultures with seven individuals of a single species per pot which were grown under well-watered conditions. One month after transplanting the seedlings to the pots, a drought treatment was applied to half of the pots (five pots per species). The experiment was harvested in late July 2020, when the first individuals started flowering, after month-long drought treatment. Plant traits related to drought responses and resource use strategies were selected and measured for each species following established protocols. These included seven above- and belowground traits: Vegetative plant height (H, cm), Leaf Area (LA, mm2), Specific Leaf Area (SLA, mm2 mg-1), Leaf Dry Matter Content (LDMC, mg g-1), Specific Root Length (SRL, cm g-1), Average root Diameter (AvgD, mm), Root Dry Matter Content (RDMC, mg g-1). Before harvesting, we measured the plant height and collected one leaf per individual for three individuals per pot. Afterward, we collected the aboveground biomass and belowground biomass of all the individuals in each pot. Due to the difficulty in untangling the roots of the different individuals in a pot, root traits were estimated at the pot level. Roots were washed and a sample of finest roots (10-50mg) was collected. Leaves and fine roots were scanned at 300dpi and 600dpi, respectively, using an Epson perfection 3200 Photo scanner for leaves and Epson V700 Photo scanner for fine roots. After scanning, leaves and roots were oven-dried at 60°C for 72h. AvgD and root length were determined using WinRHIZO Pro 2015 (Regent Instruments Inc., Canada), and leaf area with ImageJ software. We averaged all traits values at the species level, attaining a single value for each trait in each treatment. The total aboveground biomass and total belowground biomass of each pot were oven-dried at 60°C for 72h and weighed. Drought is expected to increase in future climate scenarios. Although responses to drought of individual functional traits are relatively well-known, simultaneous changes across multiple traits in response to water scarcity remain poorly understood despite its importance to understand alternative strategies to resist drought. We grew 52 herbaceous species in monocultures under drought and control treatments and characterized the functional space using seven measured above- and belowground traits: plant height, leaf area, specific leaf area, leaf dry matter content, specific root length, average root diameter, and root dry matter content. Then, we estimated how each species occupied this space and the amount of functional space occupied in both treatments using trait probability density functions. We also estimated intraspecific trait variability (ITV) for each species as the dissimilarity in trait values between the individuals of each treatment. We then mapped drought resistance and ITV in the functional space using generalized additive models. The response of species to drought strongly depended on their traits, with species that invested more in root tissues and conserved small size being both more resistant to drought and having higher ITV. We also observed a significant trend of trait displacement towards less conservative strategies. However, these changes depended strongly on the trait values of species in the control treatment, with species with different traits having opposing responses to drought. These contrasting responses resulted in lower trait variability in the species pool in drought compared to control conditions. Our results suggest strong trait filtering acting on conservative species as well as the existence of an optimal part in the functional space to which species converge under drought. Our results show that changes in species trait-space occupancy are key to understand plant strategies to withstand drought, highlighting the importance of individual variation in response to environmental changes, and suggest that community-wide functional diversity and biomass productivity could decrease in a drier future. Knowing these shifts will help to anticipate changes in ecosystem functioning facing climate change. The complete dataset is in the file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 12 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsxxk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 05 Mar 2024Publisher:Dryad Authors: Parra, Adriana; Greenberg, Jonathan;This README file was generated on 2024-03-04 by Adriana Parra. ## GENERAL INFORMATION 1\. Title of Dataset: **Climate-limited vegetation change in the conterminous United States of America** 2\. Author Information A. First Author Contact Information Name: Adriana Parra Institution: University of Nevada, Reno Address: Reno, NV USA Email: adrianaparra@unr.edu B. Co-author Contact Information Name: Jonathan Greenberg Institution: University of Nevada, Reno Address: Reno, NV USA Email: jgreenberg@unr.edu 3\. Coverage period of the dataset: 1986-2018 4\. Geographic location of dataset: Conterminous United States 5\. Description: This dataset contains the input and the resulting rasters for the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal. The dataset includes a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor. Additionally, the dataset includes a legend file for the identified climatic limiting factor rasters. ## SHARING/ACCESS INFORMATION 1\. Links to publications that cite or use the data: **Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204)** 2\. Links to other publicly accessible locations of the data: None 3\. Links/relationships to ancillary data sets: None 4\. Was data derived from another source? Yes A. If yes, list source(s): "Vegetative Lifeform Cover from Landsat SR for CONUS" product publicly available in the ORNL DAAC (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) TerraClimate data catalog publicly available at the website https://www.climatologylab.org/terraclimate.html 5\. Recommended citation for this dataset: Parra, A., & Greenberg, J. (2024). Climate-limited vegetation change in the conterminous United States of America. Global Change Biology, 30, e17204. [https://doi.org/10.1111/gcb.17204](https://doi.org/10.1111/gcb.17204) ## DATA & FILE OVERVIEW This dataset contains 16 geotiff files, and one csv file. There are 4 geotiff files per each of the lifeform classes evaluated in this study: herbaceous, tree, shrub, and non-vegetation. The files corresponding to each lifeform class are indicated by the first two letters in the file name, HC indicates herbaceous cover, TC indicates tree cover, SC indicates shrub cover, and NC indicates non-vegetation cover. 1\. File List: a) Observed change: Trends of vegetation change between 1986 and 2018. b) Potential predict: Predicted rates of vegetation change form the climate limiting factor analysis. c) Potential observed difference: Difference between the potential and the observed vegetation rates of change. d) Limiting variable: Climate variable identified as the limiting factor for each pixel the conterminous United States. e) Legend of the Limiting variable raster All the geotiff files are stored as Float 32 type, and in CONUS Albers Equal Area coordinate system (EPSG:5070) The csv file included in the dataset is the legend for the limiting variable geotiff files. This file includes the name of the climate variable corresponding to each number in the limiting variable files, as well as information on the variable type and the corresponding time lag. 2\. Relationship between files, if important: None 3\. Additional related data collected that was not included in the current data package: None 4\. Are there multiple versions of the dataset? No A. If yes, name of file(s) that was updated: NA i. Why was the file updated? NA ii. When was the file updated? NA Input data We use the available data from the “Vegetative Lifeform Cover from Landsat SR for CONUS” product (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1809) to evaluate the changes in vegetation fractional cover. The information for the climate factors was derived from the TerraClimate data catalog (https://www.climatologylab.org/terraclimate.html). We downloaded data from this catalog for the period 1971 to 2018 for the following variables: minimum temperature (TMIN), precipitation (PPT), actual evapotranspiration (AET), potential evapotranspiration (PET), and climatic water deficit (DEF). Preprocessing of vegetation fractional cover data We resampled and aligned the maps of fractional cover using pixel averaging to the extent and resolution of the TerraClimate dataset (~ 4 km). Then, we calculated rates of lifeform cover change per pixel using the Theil-Sen slope analysis (Sen, 1968; Theil, 1992). Preprocessing of climate variables data To process the climate data, we defined a year time step as the months from July of one year to July of the next. Following this definition, we constructed annual maps of each climate variable for the years 1971 to 2018. The annual maps of each climate variable were further summarized per pixel, into mean and slope (calculated as the Theil-Sen slope) across one, two, three, four, five, ten-, and 15-year lags. Estimation of climate potential We constructed a final multilayer dataset of response and predictor variables for the CONUS including the resulting maps of fractional cover rate of change (four response variables), the mean and slope maps for the climate variables for all the time-lags (70 predictor variables), and the initial percent cover for each lifeform in the year 1986 (four predictor variables). We evaluated for each pixel in the CONUS which of the predictor variables produced the minimum potential rate of change in fractional cover for each lifeform class. To do that, we first calculated the 100% quantile hull of the distribution of each predictor variable against each response variable. To calculate the 100% quantile of the predictor variables’ distribution we divided the total range of each predictor variable into equal-sized bins. The size and number of bins were set specifically per variable due to differences in their data distribution. For each of the bins, we calculated the maximum value of the vegetation rate of change, which resulted in a lookup table with the lower and upper boundaries of each bin, and the associated maximum rate of change. We constructed a total of 296 lookup tables, one per lifeform class and predictor variable combination. The resulting lookup tables were used to construct spatially explicit maps of maximum vegetation rate of change from each of the predictor variable input rasters, and the final climate potential maps were constructed by stacking all the resulting maps per lifeform class and selecting for each pixel the minimum predicted rate of change and the predictor variable that produced that rate. Identifying climate-limited areas We defined climate-limited areas as the parts of the CONUS with little or no differences between the estimated climate potential and the observed rates of change in fractional cover. To identify these areas, we subtracted the raster of observed rates of change from the raster of climate potential for each lifeform class. In the study “CLIMATE-LIMITED VEGETATION CHANGE IN THE CONTERMINOUS UNITED STATES OF AMERICA”, published in the Global Change Biology journal, we evaluated the effects of climate conditions on vegetation composition and distribution in the conterminous United States (CONUS). To disentangle the direct effects of climate change from different non-climate factors, we applied "Liebig's law of the minimum" in a geospatial context, and determined the climate-limited potential for tree, shrub, herbaceous, and non-vegetation fractional cover change. We then compared these potential rates against observed change rates for the period 1986 to 2018 to identify areas of the CONUS where vegetation change is likely being limited by climatic conditions. This dataset contains the input and the resulting rasters for the study which include a) the observed rates of vegetation change, b) the climate derived potential vegetation rates of change, c) the difference between potential and observed values and d) the identified climatic limiting factor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j0zpc86nm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.j0zpc86nm&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu