Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,186 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • SDSN Greece

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Xiong, Qiuchi;

    Vibration control is a large branch in control research, because all moving systems may induce desired or undesired vibration. Due to the limitation of passive system's adaptability and changing excitation input, vibration control brings the solution to change system dynamic with desired behavior to fulfill control targets. According to preference, vibration control can be separated into two categories: vibration reduction and vibration amplification. Lots of research papers only examine one aspect in vibration control. The thesis investigates the control development for both control targets with two different control applications: vehicle suspension and ocean wave energy converter. It develops control methods for both systems with simplified modeling setup, then followed by the application of a novel mechanical motion rectifier (MMR) gearbox that uses mechanical one-way clutches in both systems. The flow is from the control for common system to the control design for a specifically designed system. In the thesis, active (model predictive control: MPC), semi-active (Skyhook, skyhook-power driven damper: SH-PDD, hybrid model predictive control: HMPC), and passive control (Latching Control) methods are developed for different applications or control performance comparison on single system. The thesis also studies about new type of system with switching mechanism, in which other papers do not talk too much and possible control research direction to deal with such complicated system in vibration control. The state-space modeling for both systems are provided in the thesis with detailed model of the MMR gearbox. From the simulation, it can be shown that in the vehicle suspension application, the controlled MMR gearbox can be effective in improving vehicle ride comfort by 29.2% compared to that of the traditional hydraulic suspension. In the ocean wave energy converter, the controlled MMR WEC with simple latching control can improve the power generation by 57% compared to the passive MMR WEC. Besides, the passive MMR WEC also shows its advantage on the passive direct drive WEC in power generation improvement. From the control development flow for the MMR system, the limitation of the MMR gearbox is also identified, which introduces the future work in developing active-MMR gearbox by using an electromagnetic clutch. Some possible control development directions on the active-MMR is also mentioned at the end of the thesis to provide reference for future works. Master of Science Vibration happens in our daily life in almost all cases. It is a regular or irregular back and forth motion of particles. For example, when we start a vehicle, the engine will do circular motion to drive the wheel, which causes vibration and we feel wave pulses on our body when we sit in the car. However, this kind of vibration is undesirable, since it makes us uncomfortable. The car manufacture designs cushion seats to absorb vibration. This is a way to use hardware to control vibration. However, this is not enough. When vehicle goes through bumps, we do have suspension to absorb vibration transferred from road to our body. The car still experiences a big shock that makes us feel dizzy. On the opposite direction, in some cases when vibration becomes the motion source for energy harvesting, we would like to enhance it. Hardware can be helpful, since by tuning some parameters of an energy harvesting device, it can match with the vibration source to maximize vibration. However, it is still not enough due to low adaptability of a fixed parameter system. To overcome the limitation of hardware, researches begin to think about the way to control vibration, which is the method to change system behavior by using real-time adjustable hardware. By introducing vibration control, the theory behind that started to be investigated. This thesis investigates the vibration control theory application in both cases: vibration reduction and vibration enhancement, which are mentioned above due to opposite application preferences. There are two major applications of vibration control: vehicle suspension control and ocean wave energy converter (WEC) control. The thesis starts from the control development for both fields with general modeling criteria, then followed by control development with specific hardware design-mechanical motion rectifier (MMR) gearbox-applied on both systems. The MMR gearbox is the researcher designed hardware that targets on vibration adjustment with hardware capability, which is similar as the cushion seats mentioned at the beginning of the abstract. However, the MMR cannot have capability to furtherly optimize system vibration, which introduces the necessity of control development based on the existing hardware. In the suspension control application, the control strategy introduced successfully improve the vehicle ride comfort by 29.2%, which means the vehicle body acceleration has been reduced furtherly to let passenger feel less vibration. In the WEC application, the power absorbed from wave has been improved by 57% by applying suitable control strategy. The performance of improvement on vibration control has proved the effect on further vibration optimization beyond hardware limitation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2020
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2020
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cammarano, A.; Gonzalez-Buelga, A.; Neild, S. A.; Inman, D. J.; +1 Authors

    The use of tuned-mass-dampers (TMD) as structural vibration suppressors has been discussed widely over several decades and many parameter selection strategies exist for minimising the displacement of the host structure. Normally these strategies work best when the resonant frequency of the TMD is closely tuned to that of the structural mode that is being targeted. This can be an issue for structures with significant live loads such as slender bridges with heavy traffic. For this type of structure nonlinear or semi-active retunable TMDs have been proposed. In this paper we consider replacing the damper in the TMD with an electrical generator device. In its simplest form this device could be a motor/generator with a resistive load such that the velocity- force relationship is approximately proportional hence mimicking a viscous damper. Here we consider using a voice-coil linear actuator connected to an impedance emulator, which is capable of harvesting, rather than dissipating, some of the vibrational energy. We discuss how this harvested power can then be used to modify the resistive loading in real-time and hence allow a wider bandwidth of operation. The work present both numerical and experimental results and shows some viable strategies for the control and the design of the device.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2014 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2014 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Nezami, Saman;

    This thesis developed a mathematical model for a two-degree-of-freedom energy harvester that converts low-speed mechanical rotation into a piezoelectric cantilevered beam vibration. The harvester utilizes the swing motion of a small disk mounted on a large structure that rotates at a low speed (e.g. wind turbine blade) to stimulate vibration a piezoelectric beam by a magnetic repelling force. A frequency up-conversion technique is used to transform the rotation frequency of the structure to the higher vibration frequency of the beam. The corresponding electromechanical model of the energy harvester is developed using the energy method by including magnetic repelling force and piezoelectricity as coupling terms. A system of three governing equations describes the motion of the disk, vibration of the beam, and voltage output of the harvester. These equations are solved using an ODE45 function in MATLAB software and the results are verified by the corresponding experimental study. The performance of the harvester is analyzed in two configurations: (i) the disk rotates in the rotation plane of the structure (in-plane) and (ii) the disk rotates normal to the rotation plane of the structure (normal-to-plane). The varied-energy-harvesting performance is studied at different rotational speeds. At low blade speeds, the harvester generates power through regularized magnetic excitation per blade revolution. Using the in-plane configuration, a more dynamic disk movement as well as a higher voltage and power are generated when the ratio of centrifugal acceleration to gravity is more than unity. At higher blade velocities, the increased centrifugal force ratio reduces the motion of the disk and the performance of the harvester decreases. In the normal-to-plane configuration, the effect of the centrifugal force is eliminated, and the swinging motion of the disk is driven only by the change of gravity. The results show that the model can predict the power peak as a function of blade speed, and the proposed harvester can generate a considerable amount of power for self-sustainable sensing and monitoring of wind turbine blades. Additionally, the effect and sources of the intermodulation distortion and harmonic distortion caused by nonlinearities of the mechanism in the voltage output of the harvester are described.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Heit, John Dale;

    A standard lumped parameter model for an inertial vibration energy harvester consists of a proof mass, spring, and damper(s). This model can also be described with a proof mass, viscous damping element for parasitic mechanical losses, and a generalized transducer that applies some force to the mass damper system. The transducer may contain restorative spring elements and energy extraction elements to harvest power. Currently the framework to relate vibration input to an optimal transducer architecture does not exist. Previous work has shown that for some inputs nonlinear transducer architectures can result in an increased power output. This paper outlines a mathematical framework needed in order to find the optimal transducer architecture for a given vibration input. This framework defines the theoretical upper limit that any inertial transducer can harvest from a given vibration input in the presence of viscous mechanical damping. This framework is then applied to three cases of standard input types. The first application is a single sinusoid input. The transducer architecture found is the expected result, a linear spring with matched resonance to the input, and an energy extraction element, that behaves as a linear viscous damper, with matched impedance to the mechanical damping. The second application of this framework is an input of two sinusoids both having equal magnitude but different frequencies. The resulting optimal transducer is dependent on the difference in the frequencies of the two signals. This optimal transducer is often not realizable with a passive system, as it is inherently time dependent. For all cases of frequency separation between the two sinusoidal inputs, the upper limit for the energy generated is found to be twice that of a linear harvester tuned to the lower of the two frequencies. The third application is for an input whose frequency changes linearly in time (i.e. a swept sinusoid). The optimal transducer architecture for this input is found to be completely time dependent. However for the case when the change in the input frequency is much slower than the period of the system, the transducer can be approximated by a linear spring whose stiffness changes in time.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Seong, Sumin;

    Vibration energy harvesting was initially studied using the principle of linear vibration, which limits power generation to single frequency inputs. However, the random nature of vibration in the real world belies the practicality of single frequency inputs. For this reason, linear energy harvesters (EHs) are not practical. In order to overcome the weakness of linear EHs, multiple configurations of nonlinear vibration EHs have been studied and developed to account for the arbitrary nature of vibration and to broaden power bands. Although there has been successful development of nonlinear EH configurations that address the shortcoming of linear EHs, most nonlinear EHs are not practical since the designs tend to be bulky and complex. In addition, there has been no in depth study on improving the reliability of an EH, and the power output of a vibration EH is known to be sensitive to various uncertainties such as material properties, geometric tolerances, and loading conditions. This thesis presents an innovative nonlinear EH design and its reliability-based design optimization (RBDO) methods that demonstrates consistent power generation performance under various uncertainties. The new concept design is a purely mechanical nonlinear vibration EH that utilizes curved shell implemented in the center of the beam to induce nonlinearity. The proposed design for a nonlinear EH is simple and compact. RBDO for the proposed nonlinear EH configuration is performed. As a result, a compact nonlinear harvester is developed with reliable power generation performance under manufacturing uncertainties.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pawel Witczak; Michal Swiatkowski;

    This article presents a step-by-step methodology for calculating transformer tank vibrations caused by electromagnetic forces. This approach uses 3D finite element models for both magnetic and structural calculations. Particular attention was paid to the description of momentum transfer between structural and fluid areas of the transformer. The actual geometry of the coils in the phase windings was taken into account. The dominant role of the axial component of the Lorentz force is the main conclusion of the article. The results are given in the form of three-dimensional displacement fields of the transformer tank presented together with the acoustic pressure field in the oil. The theoretical analysis is verified by laser-scanned vibration patterns on the tank wall.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • �� ���������������������������� ������������������ ������������������ ���������� �������� ������������������������ ���������������������������� ������������������ ������ ���� �������������������� �������� �������������� ������ mW, ���� �������� ������ �������� ������ ����������-�������������������� ��������������������. ������������������ ���������������� ������ ������������������ 20-�������� ���� ���������� ���� �������������������������� �������������������������� ���������������� ������������ ��������������������, ���������������������������������� ������ ���������������������� ���������������� ������ �������������� ������ �������������� ���������������� ������ IoT, ������������������������ ���� ���������� ���������������������� ������ ����������������������. �������� ������ ������������������ �������������������� �������������������� ���� ���������������������� ������ ������������������������������ �������������������� ������������������ (PEH) ���������������������� ���������� ���� ������������ �������������� ������������������������ ���������������������� ������ ���������������� ���������� �������� �������������������������� ������������������. �������������� ���������������������� �������������� �������������� ���� ������������������������ ������������������������ ������������ ������ ������������ ��������������������, �������������������� ���� ������������ ���������������������������� ������������ ������ ���������������� �� �������������������� ������ ���������������������� �������������������� ������ PEH �������� ������������������������ ���������������������� ������ ������������������������������ ���������������������� ���������������� �������������������� ������������������������������ ���������������������� ������ �������������� �������������������� �������������� ���������������������� ������ ������������ ���������������� ������ ������ �������������� ������������ ��������. ���� ������ ���������� �������� �������������� ������������ �� ������������ �������������������� ������ ���������������������� ���������������� ������ PEH �������� ������ ���������������������� ���������������� ���������� �������������������� ������ ������������������ ��������������������. ���� �������������������������� �������������� ���������������������������������� ���� ������������������ ������������������������ ������������������������ ������������������ ������ ������������������������������ ������������ ������ ������ �������������� ������ ������������������. �� ���������������������� ������ �������������������������� ���������� �������� ���� �������������������� ������ ������ ���� �������������������� ����������������. ���� �������������������������� ������������������ �������������������� ������ ���������������������� �������������������� ������ ���������������� ���� ������������������ �������������� ���������������� �������������������� �������������������� ���������� ������ ���������������� ��������, �������� ���� �������������� ������������ �� ������������������������ ���� ������ �������������������� ������ �������������� ������������ ������ ������ ������������ ����������������. ���������������� ���� ������ ���������������������� ���������������� ������ �������������� ������������ ���������������� ���� �������� ������������������ ���������������� �������������� ������ ��������������������, ���������������������� �������������������� �������������� ���� �������� ���� ���������� ������������������ ������ ������������������ ������������������ ������ ������������������������������ ������������������. �� �������������������������� �������������� ���������� ������ ����������������������, �������� �� ���������������� ���������������� ������������������������ �������������� �������������� ���� ���������������� ���� �������� ���������������������� ������������������������ ������ ������������������ �������������� ���� ���������� ������������������ laser ������ ������������������ ������ ������������������������ ���� ����������������������, �������� ������ ���� �������� �������������������������� ���� 960 fps ������ ��������������������. �������� ���� ���� ���������������� ���������������������� ������ ������������ ���� �������������������� ������ ���� ���������������������� ���������� ������ ���������������� ����������������. �� �������������� ���������� ���������� ������ ������������������ ������������������ ������ ������������������������ ������������������������������ ��������������������, ���� ���������������� ������������ ���� ���������������� ������������������, ���������� ������������������������ ������������������ ������������������ ������������������������, �������������� ������������ ������ ������������ ����������������. ���������� �������������������� ��������������������, ���� �������� ������ ������������������������ ����������������������, ������ ���������������������������������� �������������������� ���� ���������������������� ���������������������������� ���������� (PZT ������ PVDF), ���� ���������������� ���������� ��������-���������������� (super capacitors) ������ �������������� ���������������������� ������ �������������������� ������������������, �� ���������� �������������� ���� ������������������ ������������ ������ ������������ ����������������. �� �������������������� �������������������� ������ �������������������� ���������� �������������� ���� �������������� ������������������������ ������ ������������������ �������������������� ������ ������������������ ������������������ ��������, ���� ���������� ������ ������������ ������ �������������� ������������ ������ ������������ ����������������. ���������� ���� ������������ ���� ������������������ ���������� �� ���������������������� ������ PZT, ������������ ������������������ ������������������������, ���� �������������������� ������ ���������������� �������� ������ ������������ ������������������������ ����������������������������, ���������� ������ �������������������������� ������ �� ���������������������� ���������������� ������ �������������������������� ���������� �������������������� �������������������� ������ �������� ������ ��������������������. �� ������ �������� ������������ ������������������ ������ �������������������� ���������� �������������������� ������ ���������������� ������������������������ ���������� ������ �������������������� �������������������� ������ �������������� ������������������ �������������� ���� ������ �������������� ������������������������ ������ �������������� ���������� �������� �������������������������� ������������������������. ���������������� ���������������������� �������� �������������������� ���������������������������� ������ �������������������� ������ ���������������������� ���� ���������������� ������������, �������� ���� ������������������������������ �������� �������������� �������������������������� ������������������, ���� �������� ���������� ������ ���������������� ������������������ ������ ���������� ������ ������ �������������������� ������������ ��������������������. Energy harvesting is the exploitation of ambient energy in a small scale (mW). Energy harvesting devices aim to replace or reduce the use of batteries in powering wireless sensor network nodes and microelectronic, wearable or MEMS devices and significantly reduce the cabling in systems with a high number of sensors. The significant progress of piezoelectric energy-harvesting technology experienced during the last 20 years, accumulated vast knowledge on the subject, however, the technology readiness level is low and there are only a few complete applications. Moreover, reliability and system integration need more focused effort to be performed. Motivated by the need for extensive experimental data, the main objective of this thesis is the support of the design process of PEH by investigating their real world characteristics and define efficiency and specific power indices allowing a fair assessment of real world performance in specially designed test rigs. Flutter type PEHs that are based on commercial piezoelectric transducers were employed in the experiments. The piezoelectric transducers tested involve the piezoelectric materials polyvinylidene Fluoride (PVDF) and Lead Zirconate Titanate (PZT). Piezoelectric energy harvesters were excited by flow induced vibration, base vibration and combinations of these excitations. The flow-induced excitation was created with air flow. The range of harvesting power reported in the literature for these transducers varied to orders of magnitude and this fact necessitated a systematic assessment with carefully designed test rigs and experimental conditions. Novel test rigs were designed both for aerodynamic and base vibration excitation. Further, it was attempted to calculate the transducer���s output based on visualization of the beam vibration by high speed photography and laser sheet visualization. These investigations were supplemented with the measurement of the combined effect of base vibration and aerodynamic excitation on the voltage output signal. The results were mapped in two dimensions to spot the combination with maximum synergy between the two excitation modes. These experiments determined the attainable harvesting power levels for each one of the transducers examined, along with the specific, optimal excitation conditions. Further, the effect of variable capacitance of the harvesting circuits was assessed, to optimize according to transducer���s type. The measured results of the energy harvesting potential of the different transducer types, in their optimal excitation modes��� combination, was satisfactorily explained by comparative calculations, based on the transducer���s mechanical and piezo-electrical properties and their vibration modes. As a further design optimization step, it was succeeded to aerodynamically excite a PZT transducer of high harvesting power capacity (order of several mW) with a high bending stiffness, by mounting a novel design of aerodynamically excited superstructure. The body of results of this thesis contribute to the optimal design of beam and flutter type piezoelectric transducers that need to be tailored to specific energy harvesting applications, taking into account the available excitation modes and potentials, power levels required and transducer positioning opportunities.

    https://dx.doi.org/1...arrow_drop_down
    https://dx.doi.org/10.26262/he...
    Other literature type . 2021
    License: CC BY NC SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      https://dx.doi.org/1...arrow_drop_down
      https://dx.doi.org/10.26262/he...
      Other literature type . 2021
      License: CC BY NC SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sneyd, Alexander;

    This dissertation describes our study of the fundamental role vibrations play in the excited-state dynamics of semiconducting energy materials. We examine these effects in self-assembled organic semiconducting nanostructures and small molecules, focussing on the implications for exciton transport, energy transfer, and light emission. Special use of ultrafast laser spectroscopy techniques such as impulsive vibrational spectroscopy and transient absorption microscopy is made to directly observe vibronic couplings and exciton transport. In self-assembled poly(3-hexylthiophene) nanofibers we observe exceptional exciton transport that cannot be explained with current models of exciton transport, despite low energetic and structural disorder. By directly measuring the excited-state vibrations, we are able to construct non-adiabatic simulations which reveal that zero-point motion enables access to delocalized states which mediate transport. This new transient delocalisation mechanism of transport can enable higher efficiencies and new device architectures. We follow this up by combining polyfluorene nanofibers with inorganic quantum rods for the purpose of energy transfer, and observe high levels of energy funnelling to the rods. Such behaviour has strong prospects for multielectron photocatalysis and upconversion. Finally, we assess the role of vibrations in the emission dynamics of several archetypal thermally-activated delayed-fluorescence emitters. We reveal their excited-state vibrations and track changes over time due to environmental relaxation. This serves to rationalize favourable emission bandwidths, low Stokes shifts, low non-radiative rates, and spin-orbit coupling enhancements. Our results challenge current pictures of exciton dynamics, and assert the varied and profound role vibrations have on properties such as energy transport and light emission. Traditionally, the uniquely strong vibrational couplings of organic semiconductors have been thought of as deleterious, but here they present themselves as an asset. For exciton transport especially, we propose design rules to harness vibrations which may enable the next generation of efficient optoelectronic devices.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Thesis . 2023
    License: CC BY NC
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Thesis . 2023
      License: CC BY NC
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Aïda Chérif; Mounir Meddad; Adil Eddiai; A. Zouhair; +2 Authors

    The vibration control using the piezoelectric elements is an interesting area for many industrial sectors. Within this framework, we proposed an improved control technique based on synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the modal structure coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propose an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propuso an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propose an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produit either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulted with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulted in multi-modal with pulse or multi-sine excitation. يعد التحكم في الاهتزاز باستخدام العناصر الكهربائية الإجهادية مجالًا مثيرًا للاهتمام للعديد من القطاعات الصناعية. ضمن هذا الإطار، اقترحنا تقنية تحكم محسنة تعتمد على تخميد التبديل المتزامن عن طريق نقل الطاقة. يحقق نقل الطاقة باستخدام سعات التخزين والمفاتيح المتزامنة مع إحداثيات الهيكل النمطي أو الفولتية الإجهادية. تنتج هذه المفاتيح إما انعكاسًا للجهد على العناصر الإجهادية لأغراض التخميد أو استخراج الطاقة، أو تصريفات متذبذبة بين العناصر الإجهادية وسعات التخزين لنقل الطاقة. تحتوي هذه الطريقة الجديدة على تحسين في تقنية التخميد المشروط SSDI - Max. تتم محاكاة أدائهم بنموذج يمثل لوحة مثبتة بأربعة عناصر كهرضغطية مقترنة بالأوضاع الهيكلية مع مراعاة خسائر النقل الواقعية. تتم محاكاة تأثير التخميد في أنماط متعددة مع إثارة نبضية أو متعددة الجيوب.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optical and Quantum ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Optical and Quantum Electronics
    Article . 2016 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Optical and Quantum Electronics
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.60692/fp...
    Other literature type . 2016
    Data sources: Datacite
    https://dx.doi.org/10.60692/ft...
    Other literature type . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optical and Quantum ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Optical and Quantum Electronics
      Article . 2016 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Optical and Quantum Electronics
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.60692/fp...
      Other literature type . 2016
      Data sources: Datacite
      https://dx.doi.org/10.60692/ft...
      Other literature type . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The present invention is an energy harvester having a mechanical natural frequency that can be mechanically tuned to the natural frequency of the vibrating environment without having to add or subtract mass to seismic/proof mass, change the mass of the mechanical spring or change the physical dimensions of the mechanical spring of the energy harvester. In another embodiment, the electromagnetic natural frequency of the energy harvester is electronically tuned by adding a tuning circuit comprising a variable dissipative element without changing the mechanical natural resonant frequencies of the energy harvester. US Patent 20150229243

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Patent . 2015
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2015
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Patent . 2015
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility46
    visibilityviews46
    downloaddownloads37
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Patent . 2015
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2015
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Patent . 2015
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,186 Research products (1 rule applied)
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Xiong, Qiuchi;

    Vibration control is a large branch in control research, because all moving systems may induce desired or undesired vibration. Due to the limitation of passive system's adaptability and changing excitation input, vibration control brings the solution to change system dynamic with desired behavior to fulfill control targets. According to preference, vibration control can be separated into two categories: vibration reduction and vibration amplification. Lots of research papers only examine one aspect in vibration control. The thesis investigates the control development for both control targets with two different control applications: vehicle suspension and ocean wave energy converter. It develops control methods for both systems with simplified modeling setup, then followed by the application of a novel mechanical motion rectifier (MMR) gearbox that uses mechanical one-way clutches in both systems. The flow is from the control for common system to the control design for a specifically designed system. In the thesis, active (model predictive control: MPC), semi-active (Skyhook, skyhook-power driven damper: SH-PDD, hybrid model predictive control: HMPC), and passive control (Latching Control) methods are developed for different applications or control performance comparison on single system. The thesis also studies about new type of system with switching mechanism, in which other papers do not talk too much and possible control research direction to deal with such complicated system in vibration control. The state-space modeling for both systems are provided in the thesis with detailed model of the MMR gearbox. From the simulation, it can be shown that in the vehicle suspension application, the controlled MMR gearbox can be effective in improving vehicle ride comfort by 29.2% compared to that of the traditional hydraulic suspension. In the ocean wave energy converter, the controlled MMR WEC with simple latching control can improve the power generation by 57% compared to the passive MMR WEC. Besides, the passive MMR WEC also shows its advantage on the passive direct drive WEC in power generation improvement. From the control development flow for the MMR system, the limitation of the MMR gearbox is also identified, which introduces the future work in developing active-MMR gearbox by using an electromagnetic clutch. Some possible control development directions on the active-MMR is also mentioned at the end of the thesis to provide reference for future works. Master of Science Vibration happens in our daily life in almost all cases. It is a regular or irregular back and forth motion of particles. For example, when we start a vehicle, the engine will do circular motion to drive the wheel, which causes vibration and we feel wave pulses on our body when we sit in the car. However, this kind of vibration is undesirable, since it makes us uncomfortable. The car manufacture designs cushion seats to absorb vibration. This is a way to use hardware to control vibration. However, this is not enough. When vehicle goes through bumps, we do have suspension to absorb vibration transferred from road to our body. The car still experiences a big shock that makes us feel dizzy. On the opposite direction, in some cases when vibration becomes the motion source for energy harvesting, we would like to enhance it. Hardware can be helpful, since by tuning some parameters of an energy harvesting device, it can match with the vibration source to maximize vibration. However, it is still not enough due to low adaptability of a fixed parameter system. To overcome the limitation of hardware, researches begin to think about the way to control vibration, which is the method to change system behavior by using real-time adjustable hardware. By introducing vibration control, the theory behind that started to be investigated. This thesis investigates the vibration control theory application in both cases: vibration reduction and vibration enhancement, which are mentioned above due to opposite application preferences. There are two major applications of vibration control: vehicle suspension control and ocean wave energy converter (WEC) control. The thesis starts from the control development for both fields with general modeling criteria, then followed by control development with specific hardware design-mechanical motion rectifier (MMR) gearbox-applied on both systems. The MMR gearbox is the researcher designed hardware that targets on vibration adjustment with hardware capability, which is similar as the cushion seats mentioned at the beginning of the abstract. However, the MMR cannot have capability to furtherly optimize system vibration, which introduces the necessity of control development based on the existing hardware. In the suspension control application, the control strategy introduced successfully improve the vehicle ride comfort by 29.2%, which means the vehicle body acceleration has been reduced furtherly to let passenger feel less vibration. In the WEC application, the power absorbed from wave has been improved by 57% by applying suitable control strategy. The performance of improvement on vibration control has proved the effect on further vibration optimization beyond hardware limitation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    VTechWorks
    Thesis . 2020
    Data sources: VTechWorks
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ VTechWorksarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      VTechWorks
      Thesis . 2020
      Data sources: VTechWorks
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Cammarano, A.; Gonzalez-Buelga, A.; Neild, S. A.; Inman, D. J.; +1 Authors

    The use of tuned-mass-dampers (TMD) as structural vibration suppressors has been discussed widely over several decades and many parameter selection strategies exist for minimising the displacement of the host structure. Normally these strategies work best when the resonant frequency of the TMD is closely tuned to that of the structural mode that is being targeted. This can be an issue for structures with significant live loads such as slender bridges with heavy traffic. For this type of structure nonlinear or semi-active retunable TMDs have been proposed. In this paper we consider replacing the damper in the TMD with an electrical generator device. In its simplest form this device could be a motor/generator with a resistive load such that the velocity- force relationship is approximately proportional hence mimicking a viscous damper. Here we consider using a voice-coil linear actuator connected to an impedance emulator, which is capable of harvesting, rather than dissipating, some of the vibrational energy. We discuss how this harvested power can then be used to modify the resistive loading in real-time and hence allow a wider bandwidth of operation. The work present both numerical and experimental results and shows some viable strategies for the control and the design of the device.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2014 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2014 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Nezami, Saman;

    This thesis developed a mathematical model for a two-degree-of-freedom energy harvester that converts low-speed mechanical rotation into a piezoelectric cantilevered beam vibration. The harvester utilizes the swing motion of a small disk mounted on a large structure that rotates at a low speed (e.g. wind turbine blade) to stimulate vibration a piezoelectric beam by a magnetic repelling force. A frequency up-conversion technique is used to transform the rotation frequency of the structure to the higher vibration frequency of the beam. The corresponding electromechanical model of the energy harvester is developed using the energy method by including magnetic repelling force and piezoelectricity as coupling terms. A system of three governing equations describes the motion of the disk, vibration of the beam, and voltage output of the harvester. These equations are solved using an ODE45 function in MATLAB software and the results are verified by the corresponding experimental study. The performance of the harvester is analyzed in two configurations: (i) the disk rotates in the rotation plane of the structure (in-plane) and (ii) the disk rotates normal to the rotation plane of the structure (normal-to-plane). The varied-energy-harvesting performance is studied at different rotational speeds. At low blade speeds, the harvester generates power through regularized magnetic excitation per blade revolution. Using the in-plane configuration, a more dynamic disk movement as well as a higher voltage and power are generated when the ratio of centrifugal acceleration to gravity is more than unity. At higher blade velocities, the increased centrifugal force ratio reduces the motion of the disk and the performance of the harvester decreases. In the normal-to-plane configuration, the effect of the centrifugal force is eliminated, and the swinging motion of the disk is driven only by the change of gravity. The results show that the model can predict the power peak as a function of blade speed, and the proposed harvester can generate a considerable amount of power for self-sustainable sensing and monitoring of wind turbine blades. Additionally, the effect and sources of the intermodulation distortion and harmonic distortion caused by nonlinearities of the mechanism in the voltage output of the harvester are described.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Heit, John Dale;

    A standard lumped parameter model for an inertial vibration energy harvester consists of a proof mass, spring, and damper(s). This model can also be described with a proof mass, viscous damping element for parasitic mechanical losses, and a generalized transducer that applies some force to the mass damper system. The transducer may contain restorative spring elements and energy extraction elements to harvest power. Currently the framework to relate vibration input to an optimal transducer architecture does not exist. Previous work has shown that for some inputs nonlinear transducer architectures can result in an increased power output. This paper outlines a mathematical framework needed in order to find the optimal transducer architecture for a given vibration input. This framework defines the theoretical upper limit that any inertial transducer can harvest from a given vibration input in the presence of viscous mechanical damping. This framework is then applied to three cases of standard input types. The first application is a single sinusoid input. The transducer architecture found is the expected result, a linear spring with matched resonance to the input, and an energy extraction element, that behaves as a linear viscous damper, with matched impedance to the mechanical damping. The second application of this framework is an input of two sinusoids both having equal magnitude but different frequencies. The resulting optimal transducer is dependent on the difference in the frequencies of the two signals. This optimal transducer is often not realizable with a passive system, as it is inherently time dependent. For all cases of frequency separation between the two sinusoidal inputs, the upper limit for the energy generated is found to be twice that of a linear harvester tuned to the lower of the two frequencies. The third application is for an input whose frequency changes linearly in time (i.e. a swept sinusoid). The optimal transducer architecture for this input is found to be completely time dependent. However for the case when the change in the input frequency is much slower than the period of the system, the transducer can be approximated by a linear spring whose stiffness changes in time.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Seong, Sumin;

    Vibration energy harvesting was initially studied using the principle of linear vibration, which limits power generation to single frequency inputs. However, the random nature of vibration in the real world belies the practicality of single frequency inputs. For this reason, linear energy harvesters (EHs) are not practical. In order to overcome the weakness of linear EHs, multiple configurations of nonlinear vibration EHs have been studied and developed to account for the arbitrary nature of vibration and to broaden power bands. Although there has been successful development of nonlinear EH configurations that address the shortcoming of linear EHs, most nonlinear EHs are not practical since the designs tend to be bulky and complex. In addition, there has been no in depth study on improving the reliability of an EH, and the power output of a vibration EH is known to be sensitive to various uncertainties such as material properties, geometric tolerances, and loading conditions. This thesis presents an innovative nonlinear EH design and its reliability-based design optimization (RBDO) methods that demonstrates consistent power generation performance under various uncertainties. The new concept design is a purely mechanical nonlinear vibration EH that utilizes curved shell implemented in the center of the beam to induce nonlinearity. The proposed design for a nonlinear EH is simple and compact. RBDO for the proposed nonlinear EH configuration is performed. As a result, a compact nonlinear harvester is developed with reliable power generation performance under manufacturing uncertainties.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pawel Witczak; Michal Swiatkowski;

    This article presents a step-by-step methodology for calculating transformer tank vibrations caused by electromagnetic forces. This approach uses 3D finite element models for both magnetic and structural calculations. Particular attention was paid to the description of momentum transfer between structural and fluid areas of the transformer. The actual geometry of the coils in the phase windings was taken into account. The dominant role of the axial component of the Lorentz force is the main conclusion of the article. The results are given in the form of three-dimensional displacement fields of the transformer tank presented together with the acoustic pressure field in the oil. The theoretical analysis is verified by laser-scanned vibration patterns on the tank wall.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • �� ���������������������������� ������������������ ������������������ ���������� �������� ������������������������ ���������������������������� ������������������ ������ ���� �������������������� �������� �������������� ������ mW, ���� �������� ������ �������� ������ ����������-�������������������� ��������������������. ������������������ ���������������� ������ ������������������ 20-�������� ���� ���������� ���� �������������������������� �������������������������� ���������������� ������������ ��������������������, ���������������������������������� ������ ���������������������� ���������������� ������ �������������� ������ �������������� ���������������� ������ IoT, ������������������������ ���� ���������� ���������������������� ������ ����������������������. �������� ������ ������������������ �������������������� �������������������� ���� ���������������������� ������ ������������������������������ �������������������� ������������������ (PEH) ���������������������� ���������� ���� ������������ �������������� ������������������������ ���������������������� ������ ���������������� ���������� �������� �������������������������� ������������������. �������������� ���������������������� �������������� �������������� ���� ������������������������ ������������������������ ������������ ������ ������������ ��������������������, �������������������� ���� ������������ ���������������������������� ������������ ������ ���������������� �� �������������������� ������ ���������������������� �������������������� ������ PEH �������� ������������������������ ���������������������� ������ ������������������������������ ���������������������� ���������������� �������������������� ������������������������������ ���������������������� ������ �������������� �������������������� �������������� ���������������������� ������ ������������ ���������������� ������ ������ �������������� ������������ ��������. ���� ������ ���������� �������� �������������� ������������ �� ������������ �������������������� ������ ���������������������� ���������������� ������ PEH �������� ������ ���������������������� ���������������� ���������� �������������������� ������ ������������������ ��������������������. ���� �������������������������� �������������� ���������������������������������� ���� ������������������ ������������������������ ������������������������ ������������������ ������ ������������������������������ ������������ ������ ������ �������������� ������ ������������������. �� ���������������������� ������ �������������������������� ���������� �������� ���� �������������������� ������ ������ ���� �������������������� ����������������. ���� �������������������������� ������������������ �������������������� ������ ���������������������� �������������������� ������ ���������������� ���� ������������������ �������������� ���������������� �������������������� �������������������� ���������� ������ ���������������� ��������, �������� ���� �������������� ������������ �� ������������������������ ���� ������ �������������������� ������ �������������� ������������ ������ ������ ������������ ����������������. ���������������� ���� ������ ���������������������� ���������������� ������ �������������� ������������ ���������������� ���� �������� ������������������ ���������������� �������������� ������ ��������������������, ���������������������� �������������������� �������������� ���� �������� ���� ���������� ������������������ ������ ������������������ ������������������ ������ ������������������������������ ������������������. �� �������������������������� �������������� ���������� ������ ����������������������, �������� �� ���������������� ���������������� ������������������������ �������������� �������������� ���� ���������������� ���� �������� ���������������������� ������������������������ ������ ������������������ �������������� ���� ���������� ������������������ laser ������ ������������������ ������ ������������������������ ���� ����������������������, �������� ������ ���� �������� �������������������������� ���� 960 fps ������ ��������������������. �������� ���� ���� ���������������� ���������������������� ������ ������������ ���� �������������������� ������ ���� ���������������������� ���������� ������ ���������������� ����������������. �� �������������� ���������� ���������� ������ ������������������ ������������������ ������ ������������������������ ������������������������������ ��������������������, ���� ���������������� ������������ ���� ���������������� ������������������, ���������� ������������������������ ������������������ ������������������ ������������������������, �������������� ������������ ������ ������������ ����������������. ���������� �������������������� ��������������������, ���� �������� ������ ������������������������ ����������������������, ������ ���������������������������������� �������������������� ���� ���������������������� ���������������������������� ���������� (PZT ������ PVDF), ���� ���������������� ���������� ��������-���������������� (super capacitors) ������ �������������� ���������������������� ������ �������������������� ������������������, �� ���������� �������������� ���� ������������������ ������������ ������ ������������ ����������������. �� �������������������� �������������������� ������ �������������������� ���������� �������������� ���� �������������� ������������������������ ������ ������������������ �������������������� ������ ������������������ ������������������ ��������, ���� ���������� ������ ������������ ������ �������������� ������������ ������ ������������ ����������������. ���������� ���� ������������ ���� ������������������ ���������� �� ���������������������� ������ PZT, ������������ ������������������ ������������������������, ���� �������������������� ������ ���������������� �������� ������ ������������ ������������������������ ����������������������������, ���������� ������ �������������������������� ������ �� ���������������������� ���������������� ������ �������������������������� ���������� �������������������� �������������������� ������ �������� ������ ��������������������. �� ������ �������� ������������ ������������������ ������ �������������������� ���������� �������������������� ������ ���������������� ������������������������ ���������� ������ �������������������� �������������������� ������ �������������� ������������������ �������������� ���� ������ �������������� ������������������������ ������ �������������� ���������� �������� �������������������������� ������������������������. ���������������� ���������������������� �������� �������������������� ���������������������������� ������ �������������������� ������ ���������������������� ���� ���������������� ������������, �������� ���� ������������������������������ �������� �������������� �������������������������� ������������������, ���� �������� ���������� ������ ���������������� ������������������ ������ ���������� ������ ������ �������������������� ������������ ��������������������. Energy harvesting is the exploitation of ambient energy in a small scale (mW). Energy harvesting devices aim to replace or reduce the use of batteries in powering wireless sensor network nodes and microelectronic, wearable or MEMS devices and significantly reduce the cabling in systems with a high number of sensors. The significant progress of piezoelectric energy-harvesting technology experienced during the last 20 years, accumulated vast knowledge on the subject, however, the technology readiness level is low and there are only a few complete applications. Moreover, reliability and system integration need more focused effort to be performed. Motivated by the need for extensive experimental data, the main objective of this thesis is the support of the design process of PEH by investigating their real world characteristics and define efficiency and specific power indices allowing a fair assessment of real world performance in specially designed test rigs. Flutter type PEHs that are based on commercial piezoelectric transducers were employed in the experiments. The piezoelectric transducers tested involve the piezoelectric materials polyvinylidene Fluoride (PVDF) and Lead Zirconate Titanate (PZT). Piezoelectric energy harvesters were excited by flow induced vibration, base vibration and combinations of these excitations. The flow-induced excitation was created with air flow. The range of harvesting power reported in the literature for these transducers varied to orders of magnitude and this fact necessitated a systematic assessment with carefully designed test rigs and experimental conditions. Novel test rigs were designed both for aerodynamic and base vibration excitation. Further, it was attempted to calculate the transducer���s output based on visualization of the beam vibration by high speed photography and laser sheet visualization. These investigations were supplemented with the measurement of the combined effect of base vibration and aerodynamic excitation on the voltage output signal. The results were mapped in two dimensions to spot the combination with maximum synergy between the two excitation modes. These experiments determined the attainable harvesting power levels for each one of the transducers examined, along with the specific, optimal excitation conditions. Further, the effect of variable capacitance of the harvesting circuits was assessed, to optimize according to transducer���s type. The measured results of the energy harvesting potential of the different transducer types, in their optimal excitation modes��� combination, was satisfactorily explained by comparative calculations, based on the transducer���s mechanical and piezo-electrical properties and their vibration modes. As a further design optimization step, it was succeeded to aerodynamically excite a PZT transducer of high harvesting power capacity (order of several mW) with a high bending stiffness, by mounting a novel design of aerodynamically excited superstructure. The body of results of this thesis contribute to the optimal design of beam and flutter type piezoelectric transducers that need to be tailored to specific energy harvesting applications, taking into account the available excitation modes and potentials, power levels required and transducer positioning opportunities.

    https://dx.doi.org/1...arrow_drop_down
    https://dx.doi.org/10.26262/he...
    Other literature type . 2021
    License: CC BY NC SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      https://dx.doi.org/1...arrow_drop_down
      https://dx.doi.org/10.26262/he...
      Other literature type . 2021
      License: CC BY NC SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sneyd, Alexander;

    This dissertation describes our study of the fundamental role vibrations play in the excited-state dynamics of semiconducting energy materials. We examine these effects in self-assembled organic semiconducting nanostructures and small molecules, focussing on the implications for exciton transport, energy transfer, and light emission. Special use of ultrafast laser spectroscopy techniques such as impulsive vibrational spectroscopy and transient absorption microscopy is made to directly observe vibronic couplings and exciton transport. In self-assembled poly(3-hexylthiophene) nanofibers we observe exceptional exciton transport that cannot be explained with current models of exciton transport, despite low energetic and structural disorder. By directly measuring the excited-state vibrations, we are able to construct non-adiabatic simulations which reveal that zero-point motion enables access to delocalized states which mediate transport. This new transient delocalisation mechanism of transport can enable higher efficiencies and new device architectures. We follow this up by combining polyfluorene nanofibers with inorganic quantum rods for the purpose of energy transfer, and observe high levels of energy funnelling to the rods. Such behaviour has strong prospects for multielectron photocatalysis and upconversion. Finally, we assess the role of vibrations in the emission dynamics of several archetypal thermally-activated delayed-fluorescence emitters. We reveal their excited-state vibrations and track changes over time due to environmental relaxation. This serves to rationalize favourable emission bandwidths, low Stokes shifts, low non-radiative rates, and spin-orbit coupling enhancements. Our results challenge current pictures of exciton dynamics, and assert the varied and profound role vibrations have on properties such as energy transport and light emission. Traditionally, the uniquely strong vibrational couplings of organic semiconductors have been thought of as deleterious, but here they present themselves as an asset. For exciton transport especially, we propose design rules to harness vibrations which may enable the next generation of efficient optoelectronic devices.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Thesis . 2023
    License: CC BY NC
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Thesis . 2023
      License: CC BY NC
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Aïda Chérif; Mounir Meddad; Adil Eddiai; A. Zouhair; +2 Authors

    The vibration control using the piezoelectric elements is an interesting area for many industrial sectors. Within this framework, we proposed an improved control technique based on synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the modal structure coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propose an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propuso an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produce either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulated with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulated in multi-modal with pulse or multi-sine excitation. The vibration control using the piezoelectric elements is an area interesting for many industrial sectors. Within this framework, we propose an improved control technique based in synchronized switch damping by energy transfer. It realizes the energy transfer using storage capacitances and switches synchronized with the structure modal coordinates or piezo-voltages. These switches produit either a voltage inversion on the piezoelements for damping or energy extraction purposes, or oscillating discharges between the piezoelements and the storage capacitances for energy transfer. This new method has an improvement in the modal damping technology SSDI-Max. Their performance is simulted with a model representative of a clamped plate with four piezoelectric elements coupled with the structural modes while taking into account realistic transfer losses. The damping effect is simulted in multi-modal with pulse or multi-sine excitation. يعد التحكم في الاهتزاز باستخدام العناصر الكهربائية الإجهادية مجالًا مثيرًا للاهتمام للعديد من القطاعات الصناعية. ضمن هذا الإطار، اقترحنا تقنية تحكم محسنة تعتمد على تخميد التبديل المتزامن عن طريق نقل الطاقة. يحقق نقل الطاقة باستخدام سعات التخزين والمفاتيح المتزامنة مع إحداثيات الهيكل النمطي أو الفولتية الإجهادية. تنتج هذه المفاتيح إما انعكاسًا للجهد على العناصر الإجهادية لأغراض التخميد أو استخراج الطاقة، أو تصريفات متذبذبة بين العناصر الإجهادية وسعات التخزين لنقل الطاقة. تحتوي هذه الطريقة الجديدة على تحسين في تقنية التخميد المشروط SSDI - Max. تتم محاكاة أدائهم بنموذج يمثل لوحة مثبتة بأربعة عناصر كهرضغطية مقترنة بالأوضاع الهيكلية مع مراعاة خسائر النقل الواقعية. تتم محاكاة تأثير التخميد في أنماط متعددة مع إثارة نبضية أو متعددة الجيوب.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optical and Quantum ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Optical and Quantum Electronics
    Article . 2016 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Optical and Quantum Electronics
    Article
    License: CC BY
    Data sources: UnpayWall
    https://dx.doi.org/10.60692/fp...
    Other literature type . 2016
    Data sources: Datacite
    https://dx.doi.org/10.60692/ft...
    Other literature type . 2016
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Optical and Quantum ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Optical and Quantum Electronics
      Article . 2016 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Optical and Quantum Electronics
      Article
      License: CC BY
      Data sources: UnpayWall
      https://dx.doi.org/10.60692/fp...
      Other literature type . 2016
      Data sources: Datacite
      https://dx.doi.org/10.60692/ft...
      Other literature type . 2016
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The present invention is an energy harvester having a mechanical natural frequency that can be mechanically tuned to the natural frequency of the vibrating environment without having to add or subtract mass to seismic/proof mass, change the mass of the mechanical spring or change the physical dimensions of the mechanical spring of the energy harvester. In another embodiment, the electromagnetic natural frequency of the energy harvester is electronically tuned by adding a tuning circuit comprising a variable dissipative element without changing the mechanical natural resonant frequencies of the energy harvester. US Patent 20150229243

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Patent . 2015
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2015
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Patent . 2015
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility46
    visibilityviews46
    downloaddownloads37
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Patent . 2015
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2015
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Patent . 2015
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.