- home
- Advanced Search
- Energy Research
- other engineering and technologies
- AT
- Energies
- Energy Research
- other engineering and technologies
- AT
- Energies
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Gerald Franzl; Stefan Wilker; Nikolaos Efkarpidis; Thilo Sauter;doi: 10.3390/en15031001
To realise the energy transition, every renewable source shall at least partially contribute to the demand–supply balancing, including customer-owned controllable loads and energy sources. Their commonly small size and spatial occurrence suggests addressing volatility issues locally, using local flexibilities to mitigate their impact. This calls for simple and effective signalling that enables interaction among local stakeholders, including local producers and customers. According interfaces and information formats appear to not yet exist. In this article, we propose a traffic-light-like system that enables the local grid operator to trigger situation-aware customer behaviour, supporting grid stability when needed and, in return, allowing customers to fully exploit temporary grid capacity when no safety or stability issues persist. The applied intuitive deduction method based on existing coordination mechanisms and objectives indicates, without proof, that the proposed granular traffic light system can enable the distribution grid flexibility required to facilitate more renewable energy being produced and inserted by local customers, to relieve grid levels above from transporting and equalising volatile energy shares, and to improve the economics of distributed renewable energy sources.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Gerald Franzl; Stefan Wilker; Nikolaos Efkarpidis; Thilo Sauter;doi: 10.3390/en15031001
To realise the energy transition, every renewable source shall at least partially contribute to the demand–supply balancing, including customer-owned controllable loads and energy sources. Their commonly small size and spatial occurrence suggests addressing volatility issues locally, using local flexibilities to mitigate their impact. This calls for simple and effective signalling that enables interaction among local stakeholders, including local producers and customers. According interfaces and information formats appear to not yet exist. In this article, we propose a traffic-light-like system that enables the local grid operator to trigger situation-aware customer behaviour, supporting grid stability when needed and, in return, allowing customers to fully exploit temporary grid capacity when no safety or stability issues persist. The applied intuitive deduction method based on existing coordination mechanisms and objectives indicates, without proof, that the proposed granular traffic light system can enable the distribution grid flexibility required to facilitate more renewable energy being produced and inserted by local customers, to relieve grid levels above from transporting and equalising volatile energy shares, and to improve the economics of distributed renewable energy sources.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors: Sebastian Schuh; Jens Frühhaber; Thomas Lauer; Franz Winter;doi: 10.3390/en12224396
In this study, a reaction mechanism is presented that is optimized for the simulation of the dual fuel combustion process using n-heptane and a mixture of methane/propane as surrogate fuels for diesel and natural gas, respectively. By comparing the measured and calculated ignition delay times (IDTs) of different homogeneous methane–propane–n-heptane mixtures, six different n-heptane mechanisms were investigated and evaluated. The selected mechanism was used for computational fluid dynamics (CFD) simulations to calculate the ignition of a diesel spray injected into air and a natural gas–air mixture. The observed deviations between the simulation results and the measurements performed with a rapid compression expansion machine (RCEM) and a combustion vessel motivated the adaptation of the mechanism by adjusting the Arrhenius parameters of individual reactions. For the identification of the reactions suitable for the mechanism adaption, sensitivity and flow analyzes were performed. The adjusted mechanism is able to describe ignition phenomena in the context of natural gas–diesel, i.e., dual fuel combustion.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors: Sebastian Schuh; Jens Frühhaber; Thomas Lauer; Franz Winter;doi: 10.3390/en12224396
In this study, a reaction mechanism is presented that is optimized for the simulation of the dual fuel combustion process using n-heptane and a mixture of methane/propane as surrogate fuels for diesel and natural gas, respectively. By comparing the measured and calculated ignition delay times (IDTs) of different homogeneous methane–propane–n-heptane mixtures, six different n-heptane mechanisms were investigated and evaluated. The selected mechanism was used for computational fluid dynamics (CFD) simulations to calculate the ignition of a diesel spray injected into air and a natural gas–air mixture. The observed deviations between the simulation results and the measurements performed with a rapid compression expansion machine (RCEM) and a combustion vessel motivated the adaptation of the mechanism by adjusting the Arrhenius parameters of individual reactions. For the identification of the reactions suitable for the mechanism adaption, sensitivity and flow analyzes were performed. The adjusted mechanism is able to describe ignition phenomena in the context of natural gas–diesel, i.e., dual fuel combustion.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 CroatiaPublisher:MDPI AG Luka Mihanović; Viktor Hacker; Željko Penga; Lei Xing; Lei Xing;doi: 10.3390/en14123675
A numerical study is conducted to compare the current most popular flow field configurations, porous, biporous, porous with baffles, Toyota 3D fine-mesh, and traditional rectangular flow field. Operation at high current densities is considered to elucidate the effect of the flow field designs on the overall heat transfer and liquid water removal. A comprehensive 3D, multiphase, nonisothermal computational fluid dynamics model is developed based on up-to-date heat and mass transfer sub-models, incorporating the complete formulation of the Forchheimer inertial effect and the permeability ratio of the biporous layers. The porous and baffled flow field improves the cell performance by minimizing mass transport losses, enhancing the water removal from the diffusion layers. The baffled flow field is chosen for optimization owing to the simple design and low manufacturing cost. A total of 49 configurations were mutually compared in the design of experiments to show the quantitative effect of each parameter on the performance of the baffled flow field. The results elucidate the significant influence of small geometry modifications on the overall heat and mass transfer. The results of different cases have shown that water saturation can be decreased by up to 33.59% and maximal temperature by 7.91 °C when compared to the reference case which is already characterized by very high performance. The most influencing geometry parameters of the baffles on the cell performance are revealed. The best case of the 49 studied cases is further optimized by introducing a linear scaling factor. Additional geometry modifications demonstrate that the gain in performance can be increased, but at a cost of higher pressure drop and increased design complexity. The conclusions of this work aids in the development of compact and high-performance proton exchange membrane fuel cell stacks.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 CroatiaPublisher:MDPI AG Luka Mihanović; Viktor Hacker; Željko Penga; Lei Xing; Lei Xing;doi: 10.3390/en14123675
A numerical study is conducted to compare the current most popular flow field configurations, porous, biporous, porous with baffles, Toyota 3D fine-mesh, and traditional rectangular flow field. Operation at high current densities is considered to elucidate the effect of the flow field designs on the overall heat transfer and liquid water removal. A comprehensive 3D, multiphase, nonisothermal computational fluid dynamics model is developed based on up-to-date heat and mass transfer sub-models, incorporating the complete formulation of the Forchheimer inertial effect and the permeability ratio of the biporous layers. The porous and baffled flow field improves the cell performance by minimizing mass transport losses, enhancing the water removal from the diffusion layers. The baffled flow field is chosen for optimization owing to the simple design and low manufacturing cost. A total of 49 configurations were mutually compared in the design of experiments to show the quantitative effect of each parameter on the performance of the baffled flow field. The results elucidate the significant influence of small geometry modifications on the overall heat and mass transfer. The results of different cases have shown that water saturation can be decreased by up to 33.59% and maximal temperature by 7.91 °C when compared to the reference case which is already characterized by very high performance. The most influencing geometry parameters of the baffles on the cell performance are revealed. The best case of the 49 studied cases is further optimized by introducing a linear scaling factor. Additional geometry modifications demonstrate that the gain in performance can be increased, but at a cost of higher pressure drop and increased design complexity. The conclusions of this work aids in the development of compact and high-performance proton exchange membrane fuel cell stacks.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yuliia Shyshko; Anatolii Cherniavskyi; Daria Shyshko; Olena Borychenko; Artur Zaporozhets; Ievgen Zaitsev;doi: 10.3390/en17030590
The article examines a method of loading biomass waste into a boiler unit, which ensures the gas tightness of the boiler’s working chamber by forming a “plug” of biomass as it moves through the cylindrical channel of the screw feeder. Local biomass wastes (sunflower husks, coniferous wood sawdust, and walnut shells) were selected for the study, a distinctive feature of which is that they did not undergo any prior processing before use (drying, fractionation, grinding, etc.). The properties of biomass as a bulk material (angle of internal friction) were determined experimentally. According to the results, sawdust from coniferous wood has an average angle of internal friction that is 1.48 times bigger than that of sunflower husks and 1.29 times bigger than walnut shells, while the average loading mass of sawdust is 2.2 times less than that of sunflower husks and 2.6 times less than that of walnut shells. This low bulk density and high angle of internal friction for sawdust suggest the likelihood of spontaneous compaction and layer suspension. Experimental studies were also conducted on the compaction force of the biomass layer. It was found that neither coniferous wood sawdust nor walnut shells can be used in the proposed feeder because the sawdust forms a dense layer that does not disperse under any compaction, and the walnut shells do not form a “plug” in the studied pressure range. Therefore, only sunflower husks were used for further studies. The empirical dependence of the density of the sunflower husk layer on the compaction pressure was obtained from the results. It was determined that to ensure a suction level through a screw feeder with a diameter of 0.1 ÷ 0.25 m into the furnace of the boiler unit of no more than 0.1 m3/h with a pressure difference between the boiler furnace and the surrounding environment ΔP = 0.05 ÷ 0.3 kPa, the relative increase in the density of the “plug” from sunflower husks should not exceed the bulk density of the uncompacted layer by more than 11.5%. Experimentally, it was determined that the geometric dimensions of the “plug” from sunflower husk, which ensure the necessary level of gas tightness of the feeder, depend only on the diameter of the channel and are 1.136·d. Calculations were made to obtain the dependencies of the compaction force of the biomass waste layer on the level of suction (in the studied range Q = 0.01 ÷ 0.1 m3/h) into the furnace of the boiler unit under controlled pressure drops (in the studied range ΔP = 0.05 ÷ 0.3 kPa) between the boiler furnace and the surrounding environment for feeders with different screw diameters (d = 0.1 ÷ 0.25 m), which can be used for the practical determination of the geometric and operational parameters of the screw feeder when operating a boiler unit on sunflower husks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yuliia Shyshko; Anatolii Cherniavskyi; Daria Shyshko; Olena Borychenko; Artur Zaporozhets; Ievgen Zaitsev;doi: 10.3390/en17030590
The article examines a method of loading biomass waste into a boiler unit, which ensures the gas tightness of the boiler’s working chamber by forming a “plug” of biomass as it moves through the cylindrical channel of the screw feeder. Local biomass wastes (sunflower husks, coniferous wood sawdust, and walnut shells) were selected for the study, a distinctive feature of which is that they did not undergo any prior processing before use (drying, fractionation, grinding, etc.). The properties of biomass as a bulk material (angle of internal friction) were determined experimentally. According to the results, sawdust from coniferous wood has an average angle of internal friction that is 1.48 times bigger than that of sunflower husks and 1.29 times bigger than walnut shells, while the average loading mass of sawdust is 2.2 times less than that of sunflower husks and 2.6 times less than that of walnut shells. This low bulk density and high angle of internal friction for sawdust suggest the likelihood of spontaneous compaction and layer suspension. Experimental studies were also conducted on the compaction force of the biomass layer. It was found that neither coniferous wood sawdust nor walnut shells can be used in the proposed feeder because the sawdust forms a dense layer that does not disperse under any compaction, and the walnut shells do not form a “plug” in the studied pressure range. Therefore, only sunflower husks were used for further studies. The empirical dependence of the density of the sunflower husk layer on the compaction pressure was obtained from the results. It was determined that to ensure a suction level through a screw feeder with a diameter of 0.1 ÷ 0.25 m into the furnace of the boiler unit of no more than 0.1 m3/h with a pressure difference between the boiler furnace and the surrounding environment ΔP = 0.05 ÷ 0.3 kPa, the relative increase in the density of the “plug” from sunflower husks should not exceed the bulk density of the uncompacted layer by more than 11.5%. Experimentally, it was determined that the geometric dimensions of the “plug” from sunflower husk, which ensure the necessary level of gas tightness of the feeder, depend only on the diameter of the channel and are 1.136·d. Calculations were made to obtain the dependencies of the compaction force of the biomass waste layer on the level of suction (in the studied range Q = 0.01 ÷ 0.1 m3/h) into the furnace of the boiler unit under controlled pressure drops (in the studied range ΔP = 0.05 ÷ 0.3 kPa) between the boiler furnace and the surrounding environment for feeders with different screw diameters (d = 0.1 ÷ 0.25 m), which can be used for the practical determination of the geometric and operational parameters of the screw feeder when operating a boiler unit on sunflower husks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Authors: Nicholas Christakis; Ioanna Evangelou; Dimitris Drikakis; George Kossioris;doi: 10.3390/en17061385
This paper introduces an innovative and eco-friendly computational methodology to assess the wind potential of a location with the aid of high-resolution simulations with a mesoscale numerical weather prediction model (WRF), coupled with the statistical “10% sampling condition”. The proposed methodology is tested for a location with complex terrain on the Greek island of Crete, where moderate to strong winds prevail for most of the year. The results are promising, indicating that this method has great potential for studying and assessing areas of interest. Adverse effects and challenges associated with wind energy production may be mitigated with methods such as the proposed one. Mitigating such effects should constitute the main focus and priority in research concerning wind energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Authors: Nicholas Christakis; Ioanna Evangelou; Dimitris Drikakis; George Kossioris;doi: 10.3390/en17061385
This paper introduces an innovative and eco-friendly computational methodology to assess the wind potential of a location with the aid of high-resolution simulations with a mesoscale numerical weather prediction model (WRF), coupled with the statistical “10% sampling condition”. The proposed methodology is tested for a location with complex terrain on the Greek island of Crete, where moderate to strong winds prevail for most of the year. The results are promising, indicating that this method has great potential for studying and assessing areas of interest. Adverse effects and challenges associated with wind energy production may be mitigated with methods such as the proposed one. Mitigating such effects should constitute the main focus and priority in research concerning wind energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2021 NetherlandsPublisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMAuthors: Fabian Schipfer; Alexandra Pfeiffer; Ric Hoefnagels;The European Bioeconomy Strategy aims to strengthen and boost biobased sectors, unlocking investments and markets while rapidly deploying local bioeconomies across Europe and improving compliance with environmental and social sustainability goals. Current biomass provision structures and infrastructure might not be able to tap the sustainable potential of forestry-, agricultural residues and biogenic waste envisaged forming the biogenic feedstock base of the Circular Bioeconomy of tomorrow. Therefore, for the present paper, we assess mobilization strategies, their current status, opportunities, and barriers for local low value and heterogenous biomass resources. Based on discussions with bioenergy supply chain experts, we cluster mobilization measures into three assessment levels; the legislative framework, market structures and technological innovation. Scientific literature research on the respective keywords is performed, the European policy landscape mapped, and the results are enriched with anecdotal evidence, especially for recent and running projects and market developments that lack in published track records. We can identify research needs on all three assessment levels. Still, technological development and legislative frameworks are providing support for heterogeneous biomass mobilization. Market creation, however, represents a bottleneck. We provide novel perspectives, how physical- and virtual bio-hubs and crediting stake- and shareholder variety could create added-value based on sustainable primary economic activities and their cascading activities.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2021 NetherlandsPublisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMAuthors: Fabian Schipfer; Alexandra Pfeiffer; Ric Hoefnagels;The European Bioeconomy Strategy aims to strengthen and boost biobased sectors, unlocking investments and markets while rapidly deploying local bioeconomies across Europe and improving compliance with environmental and social sustainability goals. Current biomass provision structures and infrastructure might not be able to tap the sustainable potential of forestry-, agricultural residues and biogenic waste envisaged forming the biogenic feedstock base of the Circular Bioeconomy of tomorrow. Therefore, for the present paper, we assess mobilization strategies, their current status, opportunities, and barriers for local low value and heterogenous biomass resources. Based on discussions with bioenergy supply chain experts, we cluster mobilization measures into three assessment levels; the legislative framework, market structures and technological innovation. Scientific literature research on the respective keywords is performed, the European policy landscape mapped, and the results are enriched with anecdotal evidence, especially for recent and running projects and market developments that lack in published track records. We can identify research needs on all three assessment levels. Still, technological development and legislative frameworks are providing support for heterogeneous biomass mobilization. Market creation, however, represents a bottleneck. We provide novel perspectives, how physical- and virtual bio-hubs and crediting stake- and shareholder variety could create added-value based on sustainable primary economic activities and their cascading activities.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Olivia Coldrey; Paul Lant; Peta Ashworth; Philip LaRocco; Christine Eibs Singer;doi: 10.3390/en17153720
A transition to clean fuels and technology for cooking is increasingly recognised as a cornerstone of sustainable development. However, sufficient, appropriate, affordable finance to support the transition is lacking. Grounded in primary data collection via expert interviews, this study’s research objective was to critically assess development finance institutions’ (DFIs) delivery of climate and development finance to address cooking poverty. Interview findings underscore DFIs’ important role in the transition, including to create the ecosystem conditions conducive to sustained investment. However, as a group they are not demonstrating the risk appetite and financial solutions that clean cooking markets need. Nor are they operating with the agility and flexibility required for rapid scale-up. Consequently, DFIs are not optimally fulfilling their mandates to create additionality and mobilise private capital in these markets. Interviewees call for DFIs to reconsider their approach, and we rely on these findings to posit a theory of change for clean cooking finance.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Olivia Coldrey; Paul Lant; Peta Ashworth; Philip LaRocco; Christine Eibs Singer;doi: 10.3390/en17153720
A transition to clean fuels and technology for cooking is increasingly recognised as a cornerstone of sustainable development. However, sufficient, appropriate, affordable finance to support the transition is lacking. Grounded in primary data collection via expert interviews, this study’s research objective was to critically assess development finance institutions’ (DFIs) delivery of climate and development finance to address cooking poverty. Interview findings underscore DFIs’ important role in the transition, including to create the ecosystem conditions conducive to sustained investment. However, as a group they are not demonstrating the risk appetite and financial solutions that clean cooking markets need. Nor are they operating with the agility and flexibility required for rapid scale-up. Consequently, DFIs are not optimally fulfilling their mandates to create additionality and mobilise private capital in these markets. Interviewees call for DFIs to reconsider their approach, and we rely on these findings to posit a theory of change for clean cooking finance.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | Demo4GridEC| Demo4GridEmmanuel Stamatakis; Ewald Perwög; Ermis Garyfallos; Mercedes Millán; Emmanuel Zoulias; Nikolaos Chalkiadakis;doi: 10.3390/en15020637
To limit the global temperature change to no more than 2 °C by reducing global emissions, the European Union (EU) set up a goal of a 20% improvement on energy efficiency, a 20% cut of greenhouse gas emissions, and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE), specifically in the transport sector). By 2030, the goal is a 27% improvement in energy efficiency, a 40% cut of greenhouse gas emissions, and a 27% share of RE. However, the integration of RE in energy system faces multiple challenges. The geographical distribution of energy supply changes significantly the availability of the primary energy source (wind, solar, water) and is the determining factor, rather than where the consumers are. This leads to an increasing demand to match supply and demand for power. Especially intermittent RE like wind and solar power face the issue of energy production unrelated to demand (issue of excess energy production beyond demand and/or grid capacity) and forecast errors leading to an increasing demand for grid services like balancing power. Megawatt electrolyzer units (beyond 3 MW) can provide a technical solution to convert large amounts of excess electricity into hydrogen for industrial applications, substitute for natural gas, or the decarbonization of the mobility sector. The demonstration of successful MW electrolyzer operation providing grid services under dynamic conditions as request by the grid can broaden the opportunities of new business models that demonstrate the profitability of an electrolyzer in these market conditions. The aim of this work is the demonstration of a technical solution utilizing Pressurized Alkaline Electrolyzer (PAE) technology for providing grid balancing services and harvesting Renewable Energy Sources (RES) under realistic circumstances. In order to identify any differences between local market and grid requirements, the work focused on a demonstration site located in Austria, deemed as a viable business case for the operation of a large-scale electrolyzer. The site is adapted to specific local conditions commonly found throughout Europe. To achieve this, this study uses a market-based solution that aims at providing value-adding services and cash inflows, stemming from the grid balancing services it provides. Moreover, the work assesses the viability of various business cases by analyzing (qualitatively and quantitatively) additional business models (in terms of business opportunities/energy source, potential grid service provision, and hydrogen demand) and analyzing the value and size of the markets developing recommendations for relevant stakeholder to decrease market barriers.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 11 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | Demo4GridEC| Demo4GridEmmanuel Stamatakis; Ewald Perwög; Ermis Garyfallos; Mercedes Millán; Emmanuel Zoulias; Nikolaos Chalkiadakis;doi: 10.3390/en15020637
To limit the global temperature change to no more than 2 °C by reducing global emissions, the European Union (EU) set up a goal of a 20% improvement on energy efficiency, a 20% cut of greenhouse gas emissions, and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE), specifically in the transport sector). By 2030, the goal is a 27% improvement in energy efficiency, a 40% cut of greenhouse gas emissions, and a 27% share of RE. However, the integration of RE in energy system faces multiple challenges. The geographical distribution of energy supply changes significantly the availability of the primary energy source (wind, solar, water) and is the determining factor, rather than where the consumers are. This leads to an increasing demand to match supply and demand for power. Especially intermittent RE like wind and solar power face the issue of energy production unrelated to demand (issue of excess energy production beyond demand and/or grid capacity) and forecast errors leading to an increasing demand for grid services like balancing power. Megawatt electrolyzer units (beyond 3 MW) can provide a technical solution to convert large amounts of excess electricity into hydrogen for industrial applications, substitute for natural gas, or the decarbonization of the mobility sector. The demonstration of successful MW electrolyzer operation providing grid services under dynamic conditions as request by the grid can broaden the opportunities of new business models that demonstrate the profitability of an electrolyzer in these market conditions. The aim of this work is the demonstration of a technical solution utilizing Pressurized Alkaline Electrolyzer (PAE) technology for providing grid balancing services and harvesting Renewable Energy Sources (RES) under realistic circumstances. In order to identify any differences between local market and grid requirements, the work focused on a demonstration site located in Austria, deemed as a viable business case for the operation of a large-scale electrolyzer. The site is adapted to specific local conditions commonly found throughout Europe. To achieve this, this study uses a market-based solution that aims at providing value-adding services and cash inflows, stemming from the grid balancing services it provides. Moreover, the work assesses the viability of various business cases by analyzing (qualitatively and quantitatively) additional business models (in terms of business opportunities/energy source, potential grid service provision, and hydrogen demand) and analyzing the value and size of the markets developing recommendations for relevant stakeholder to decrease market barriers.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 11 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Sweden, AustriaPublisher:MDPI AG Fumi Harahap; Sylvain Leduc; Sennai Mesfun; Dilip Khatiwada; Florian Kraxner; Semida Silveira;doi: 10.3390/en12030420
Significant amounts of biomass residues were generated in Indonesia. While untreated, residues emit greenhouse gases during the decomposition process. On the other hand, if efficiently utilized, these residues could be used to produce value-added products. This study investigates opportunities for harnessing the full potential of palm oil residues (i.e., empty fruit bunches, kernel shells, fiber, and mill effluent). As far as we are aware, the study is the first attempt to model the palm oil supply chain in a geographically explicit way while considering regional infrastructures in Sumatra Island, Indonesia. The BeWhere model, a mixed integer linear programming model for energy system optimization, was used to assess the costs and benefits of optimizing the regional palm oil supply chain. Different scenarios were investigated, considering current policies and new practices leading to improved yields in small-scale plantations and power grid connectivity. The study shows that a more efficient palm oil supply chain can pave the way for the country to meet up to 50% of its national bioenergy targets by 2025, and emission reductions of up to 40 MtCO2eq/year. As much as 50% of the electricity demand in Sumatra could be met if residues are efficiently used and grid connections are available. We recommend that system improvements be done in stages. In the short to medium term, improving the smallholder plantation yield is the most optimal way to maximize regional economic gains from the palm oil industry. In the medium to long term, improving electricity grid connection to palm oil mills could bring higher economic value as excess electricity is commercialized.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Sweden, AustriaPublisher:MDPI AG Fumi Harahap; Sylvain Leduc; Sennai Mesfun; Dilip Khatiwada; Florian Kraxner; Semida Silveira;doi: 10.3390/en12030420
Significant amounts of biomass residues were generated in Indonesia. While untreated, residues emit greenhouse gases during the decomposition process. On the other hand, if efficiently utilized, these residues could be used to produce value-added products. This study investigates opportunities for harnessing the full potential of palm oil residues (i.e., empty fruit bunches, kernel shells, fiber, and mill effluent). As far as we are aware, the study is the first attempt to model the palm oil supply chain in a geographically explicit way while considering regional infrastructures in Sumatra Island, Indonesia. The BeWhere model, a mixed integer linear programming model for energy system optimization, was used to assess the costs and benefits of optimizing the regional palm oil supply chain. Different scenarios were investigated, considering current policies and new practices leading to improved yields in small-scale plantations and power grid connectivity. The study shows that a more efficient palm oil supply chain can pave the way for the country to meet up to 50% of its national bioenergy targets by 2025, and emission reductions of up to 40 MtCO2eq/year. As much as 50% of the electricity demand in Sumatra could be met if residues are efficiently used and grid connections are available. We recommend that system improvements be done in stages. In the short to medium term, improving the smallholder plantation yield is the most optimal way to maximize regional economic gains from the palm oil industry. In the medium to long term, improving electricity grid connection to palm oil mills could bring higher economic value as excess electricity is commercialized.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | LONGRUN, EC | uCAReEC| LONGRUN ,EC| uCAReMartin Opetnik; Stefan Hausberger; Claus Uwe Matzer; Silke Lipp; Lukas Landl; Konstantin Weller; Miriam Elser;doi: 10.3390/en17092052
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | LONGRUN, EC | uCAReEC| LONGRUN ,EC| uCAReMartin Opetnik; Stefan Hausberger; Claus Uwe Matzer; Silke Lipp; Lukas Landl; Konstantin Weller; Miriam Elser;doi: 10.3390/en17092052
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Gerald Franzl; Stefan Wilker; Nikolaos Efkarpidis; Thilo Sauter;doi: 10.3390/en15031001
To realise the energy transition, every renewable source shall at least partially contribute to the demand–supply balancing, including customer-owned controllable loads and energy sources. Their commonly small size and spatial occurrence suggests addressing volatility issues locally, using local flexibilities to mitigate their impact. This calls for simple and effective signalling that enables interaction among local stakeholders, including local producers and customers. According interfaces and information formats appear to not yet exist. In this article, we propose a traffic-light-like system that enables the local grid operator to trigger situation-aware customer behaviour, supporting grid stability when needed and, in return, allowing customers to fully exploit temporary grid capacity when no safety or stability issues persist. The applied intuitive deduction method based on existing coordination mechanisms and objectives indicates, without proof, that the proposed granular traffic light system can enable the distribution grid flexibility required to facilitate more renewable energy being produced and inserted by local customers, to relieve grid levels above from transporting and equalising volatile energy shares, and to improve the economics of distributed renewable energy sources.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Gerald Franzl; Stefan Wilker; Nikolaos Efkarpidis; Thilo Sauter;doi: 10.3390/en15031001
To realise the energy transition, every renewable source shall at least partially contribute to the demand–supply balancing, including customer-owned controllable loads and energy sources. Their commonly small size and spatial occurrence suggests addressing volatility issues locally, using local flexibilities to mitigate their impact. This calls for simple and effective signalling that enables interaction among local stakeholders, including local producers and customers. According interfaces and information formats appear to not yet exist. In this article, we propose a traffic-light-like system that enables the local grid operator to trigger situation-aware customer behaviour, supporting grid stability when needed and, in return, allowing customers to fully exploit temporary grid capacity when no safety or stability issues persist. The applied intuitive deduction method based on existing coordination mechanisms and objectives indicates, without proof, that the proposed granular traffic light system can enable the distribution grid flexibility required to facilitate more renewable energy being produced and inserted by local customers, to relieve grid levels above from transporting and equalising volatile energy shares, and to improve the economics of distributed renewable energy sources.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/3/1001/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15031001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors: Sebastian Schuh; Jens Frühhaber; Thomas Lauer; Franz Winter;doi: 10.3390/en12224396
In this study, a reaction mechanism is presented that is optimized for the simulation of the dual fuel combustion process using n-heptane and a mixture of methane/propane as surrogate fuels for diesel and natural gas, respectively. By comparing the measured and calculated ignition delay times (IDTs) of different homogeneous methane–propane–n-heptane mixtures, six different n-heptane mechanisms were investigated and evaluated. The selected mechanism was used for computational fluid dynamics (CFD) simulations to calculate the ignition of a diesel spray injected into air and a natural gas–air mixture. The observed deviations between the simulation results and the measurements performed with a rapid compression expansion machine (RCEM) and a combustion vessel motivated the adaptation of the mechanism by adjusting the Arrhenius parameters of individual reactions. For the identification of the reactions suitable for the mechanism adaption, sensitivity and flow analyzes were performed. The adjusted mechanism is able to describe ignition phenomena in the context of natural gas–diesel, i.e., dual fuel combustion.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2019Publisher:MDPI AG Authors: Sebastian Schuh; Jens Frühhaber; Thomas Lauer; Franz Winter;doi: 10.3390/en12224396
In this study, a reaction mechanism is presented that is optimized for the simulation of the dual fuel combustion process using n-heptane and a mixture of methane/propane as surrogate fuels for diesel and natural gas, respectively. By comparing the measured and calculated ignition delay times (IDTs) of different homogeneous methane–propane–n-heptane mixtures, six different n-heptane mechanisms were investigated and evaluated. The selected mechanism was used for computational fluid dynamics (CFD) simulations to calculate the ignition of a diesel spray injected into air and a natural gas–air mixture. The observed deviations between the simulation results and the measurements performed with a rapid compression expansion machine (RCEM) and a combustion vessel motivated the adaptation of the mechanism by adjusting the Arrhenius parameters of individual reactions. For the identification of the reactions suitable for the mechanism adaption, sensitivity and flow analyzes were performed. The adjusted mechanism is able to describe ignition phenomena in the context of natural gas–diesel, i.e., dual fuel combustion.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4396/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 CroatiaPublisher:MDPI AG Luka Mihanović; Viktor Hacker; Željko Penga; Lei Xing; Lei Xing;doi: 10.3390/en14123675
A numerical study is conducted to compare the current most popular flow field configurations, porous, biporous, porous with baffles, Toyota 3D fine-mesh, and traditional rectangular flow field. Operation at high current densities is considered to elucidate the effect of the flow field designs on the overall heat transfer and liquid water removal. A comprehensive 3D, multiphase, nonisothermal computational fluid dynamics model is developed based on up-to-date heat and mass transfer sub-models, incorporating the complete formulation of the Forchheimer inertial effect and the permeability ratio of the biporous layers. The porous and baffled flow field improves the cell performance by minimizing mass transport losses, enhancing the water removal from the diffusion layers. The baffled flow field is chosen for optimization owing to the simple design and low manufacturing cost. A total of 49 configurations were mutually compared in the design of experiments to show the quantitative effect of each parameter on the performance of the baffled flow field. The results elucidate the significant influence of small geometry modifications on the overall heat and mass transfer. The results of different cases have shown that water saturation can be decreased by up to 33.59% and maximal temperature by 7.91 °C when compared to the reference case which is already characterized by very high performance. The most influencing geometry parameters of the baffles on the cell performance are revealed. The best case of the 49 studied cases is further optimized by introducing a linear scaling factor. Additional geometry modifications demonstrate that the gain in performance can be increased, but at a cost of higher pressure drop and increased design complexity. The conclusions of this work aids in the development of compact and high-performance proton exchange membrane fuel cell stacks.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 CroatiaPublisher:MDPI AG Luka Mihanović; Viktor Hacker; Željko Penga; Lei Xing; Lei Xing;doi: 10.3390/en14123675
A numerical study is conducted to compare the current most popular flow field configurations, porous, biporous, porous with baffles, Toyota 3D fine-mesh, and traditional rectangular flow field. Operation at high current densities is considered to elucidate the effect of the flow field designs on the overall heat transfer and liquid water removal. A comprehensive 3D, multiphase, nonisothermal computational fluid dynamics model is developed based on up-to-date heat and mass transfer sub-models, incorporating the complete formulation of the Forchheimer inertial effect and the permeability ratio of the biporous layers. The porous and baffled flow field improves the cell performance by minimizing mass transport losses, enhancing the water removal from the diffusion layers. The baffled flow field is chosen for optimization owing to the simple design and low manufacturing cost. A total of 49 configurations were mutually compared in the design of experiments to show the quantitative effect of each parameter on the performance of the baffled flow field. The results elucidate the significant influence of small geometry modifications on the overall heat and mass transfer. The results of different cases have shown that water saturation can be decreased by up to 33.59% and maximal temperature by 7.91 °C when compared to the reference case which is already characterized by very high performance. The most influencing geometry parameters of the baffles on the cell performance are revealed. The best case of the 49 studied cases is further optimized by introducing a linear scaling factor. Additional geometry modifications demonstrate that the gain in performance can be increased, but at a cost of higher pressure drop and increased design complexity. The conclusions of this work aids in the development of compact and high-performance proton exchange membrane fuel cell stacks.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3675/pdfData sources: Multidisciplinary Digital Publishing InstituteCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123675&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yuliia Shyshko; Anatolii Cherniavskyi; Daria Shyshko; Olena Borychenko; Artur Zaporozhets; Ievgen Zaitsev;doi: 10.3390/en17030590
The article examines a method of loading biomass waste into a boiler unit, which ensures the gas tightness of the boiler’s working chamber by forming a “plug” of biomass as it moves through the cylindrical channel of the screw feeder. Local biomass wastes (sunflower husks, coniferous wood sawdust, and walnut shells) were selected for the study, a distinctive feature of which is that they did not undergo any prior processing before use (drying, fractionation, grinding, etc.). The properties of biomass as a bulk material (angle of internal friction) were determined experimentally. According to the results, sawdust from coniferous wood has an average angle of internal friction that is 1.48 times bigger than that of sunflower husks and 1.29 times bigger than walnut shells, while the average loading mass of sawdust is 2.2 times less than that of sunflower husks and 2.6 times less than that of walnut shells. This low bulk density and high angle of internal friction for sawdust suggest the likelihood of spontaneous compaction and layer suspension. Experimental studies were also conducted on the compaction force of the biomass layer. It was found that neither coniferous wood sawdust nor walnut shells can be used in the proposed feeder because the sawdust forms a dense layer that does not disperse under any compaction, and the walnut shells do not form a “plug” in the studied pressure range. Therefore, only sunflower husks were used for further studies. The empirical dependence of the density of the sunflower husk layer on the compaction pressure was obtained from the results. It was determined that to ensure a suction level through a screw feeder with a diameter of 0.1 ÷ 0.25 m into the furnace of the boiler unit of no more than 0.1 m3/h with a pressure difference between the boiler furnace and the surrounding environment ΔP = 0.05 ÷ 0.3 kPa, the relative increase in the density of the “plug” from sunflower husks should not exceed the bulk density of the uncompacted layer by more than 11.5%. Experimentally, it was determined that the geometric dimensions of the “plug” from sunflower husk, which ensure the necessary level of gas tightness of the feeder, depend only on the diameter of the channel and are 1.136·d. Calculations were made to obtain the dependencies of the compaction force of the biomass waste layer on the level of suction (in the studied range Q = 0.01 ÷ 0.1 m3/h) into the furnace of the boiler unit under controlled pressure drops (in the studied range ΔP = 0.05 ÷ 0.3 kPa) between the boiler furnace and the surrounding environment for feeders with different screw diameters (d = 0.1 ÷ 0.25 m), which can be used for the practical determination of the geometric and operational parameters of the screw feeder when operating a boiler unit on sunflower husks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Yuliia Shyshko; Anatolii Cherniavskyi; Daria Shyshko; Olena Borychenko; Artur Zaporozhets; Ievgen Zaitsev;doi: 10.3390/en17030590
The article examines a method of loading biomass waste into a boiler unit, which ensures the gas tightness of the boiler’s working chamber by forming a “plug” of biomass as it moves through the cylindrical channel of the screw feeder. Local biomass wastes (sunflower husks, coniferous wood sawdust, and walnut shells) were selected for the study, a distinctive feature of which is that they did not undergo any prior processing before use (drying, fractionation, grinding, etc.). The properties of biomass as a bulk material (angle of internal friction) were determined experimentally. According to the results, sawdust from coniferous wood has an average angle of internal friction that is 1.48 times bigger than that of sunflower husks and 1.29 times bigger than walnut shells, while the average loading mass of sawdust is 2.2 times less than that of sunflower husks and 2.6 times less than that of walnut shells. This low bulk density and high angle of internal friction for sawdust suggest the likelihood of spontaneous compaction and layer suspension. Experimental studies were also conducted on the compaction force of the biomass layer. It was found that neither coniferous wood sawdust nor walnut shells can be used in the proposed feeder because the sawdust forms a dense layer that does not disperse under any compaction, and the walnut shells do not form a “plug” in the studied pressure range. Therefore, only sunflower husks were used for further studies. The empirical dependence of the density of the sunflower husk layer on the compaction pressure was obtained from the results. It was determined that to ensure a suction level through a screw feeder with a diameter of 0.1 ÷ 0.25 m into the furnace of the boiler unit of no more than 0.1 m3/h with a pressure difference between the boiler furnace and the surrounding environment ΔP = 0.05 ÷ 0.3 kPa, the relative increase in the density of the “plug” from sunflower husks should not exceed the bulk density of the uncompacted layer by more than 11.5%. Experimentally, it was determined that the geometric dimensions of the “plug” from sunflower husk, which ensure the necessary level of gas tightness of the feeder, depend only on the diameter of the channel and are 1.136·d. Calculations were made to obtain the dependencies of the compaction force of the biomass waste layer on the level of suction (in the studied range Q = 0.01 ÷ 0.1 m3/h) into the furnace of the boiler unit under controlled pressure drops (in the studied range ΔP = 0.05 ÷ 0.3 kPa) between the boiler furnace and the surrounding environment for feeders with different screw diameters (d = 0.1 ÷ 0.25 m), which can be used for the practical determination of the geometric and operational parameters of the screw feeder when operating a boiler unit on sunflower husks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17030590&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Authors: Nicholas Christakis; Ioanna Evangelou; Dimitris Drikakis; George Kossioris;doi: 10.3390/en17061385
This paper introduces an innovative and eco-friendly computational methodology to assess the wind potential of a location with the aid of high-resolution simulations with a mesoscale numerical weather prediction model (WRF), coupled with the statistical “10% sampling condition”. The proposed methodology is tested for a location with complex terrain on the Greek island of Crete, where moderate to strong winds prevail for most of the year. The results are promising, indicating that this method has great potential for studying and assessing areas of interest. Adverse effects and challenges associated with wind energy production may be mitigated with methods such as the proposed one. Mitigating such effects should constitute the main focus and priority in research concerning wind energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Authors: Nicholas Christakis; Ioanna Evangelou; Dimitris Drikakis; George Kossioris;doi: 10.3390/en17061385
This paper introduces an innovative and eco-friendly computational methodology to assess the wind potential of a location with the aid of high-resolution simulations with a mesoscale numerical weather prediction model (WRF), coupled with the statistical “10% sampling condition”. The proposed methodology is tested for a location with complex terrain on the Greek island of Crete, where moderate to strong winds prevail for most of the year. The results are promising, indicating that this method has great potential for studying and assessing areas of interest. Adverse effects and challenges associated with wind energy production may be mitigated with methods such as the proposed one. Mitigating such effects should constitute the main focus and priority in research concerning wind energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17061385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2021 NetherlandsPublisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMAuthors: Fabian Schipfer; Alexandra Pfeiffer; Ric Hoefnagels;The European Bioeconomy Strategy aims to strengthen and boost biobased sectors, unlocking investments and markets while rapidly deploying local bioeconomies across Europe and improving compliance with environmental and social sustainability goals. Current biomass provision structures and infrastructure might not be able to tap the sustainable potential of forestry-, agricultural residues and biogenic waste envisaged forming the biogenic feedstock base of the Circular Bioeconomy of tomorrow. Therefore, for the present paper, we assess mobilization strategies, their current status, opportunities, and barriers for local low value and heterogenous biomass resources. Based on discussions with bioenergy supply chain experts, we cluster mobilization measures into three assessment levels; the legislative framework, market structures and technological innovation. Scientific literature research on the respective keywords is performed, the European policy landscape mapped, and the results are enriched with anecdotal evidence, especially for recent and running projects and market developments that lack in published track records. We can identify research needs on all three assessment levels. Still, technological development and legislative frameworks are providing support for heterogeneous biomass mobilization. Market creation, however, represents a bottleneck. We provide novel perspectives, how physical- and virtual bio-hubs and crediting stake- and shareholder variety could create added-value based on sustainable primary economic activities and their cascading activities.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Preprint 2021 NetherlandsPublisher:MDPI AG Funded by:EC | S2BIOMEC| S2BIOMAuthors: Fabian Schipfer; Alexandra Pfeiffer; Ric Hoefnagels;The European Bioeconomy Strategy aims to strengthen and boost biobased sectors, unlocking investments and markets while rapidly deploying local bioeconomies across Europe and improving compliance with environmental and social sustainability goals. Current biomass provision structures and infrastructure might not be able to tap the sustainable potential of forestry-, agricultural residues and biogenic waste envisaged forming the biogenic feedstock base of the Circular Bioeconomy of tomorrow. Therefore, for the present paper, we assess mobilization strategies, their current status, opportunities, and barriers for local low value and heterogenous biomass resources. Based on discussions with bioenergy supply chain experts, we cluster mobilization measures into three assessment levels; the legislative framework, market structures and technological innovation. Scientific literature research on the respective keywords is performed, the European policy landscape mapped, and the results are enriched with anecdotal evidence, especially for recent and running projects and market developments that lack in published track records. We can identify research needs on all three assessment levels. Still, technological development and legislative frameworks are providing support for heterogeneous biomass mobilization. Market creation, however, represents a bottleneck. We provide novel perspectives, how physical- and virtual bio-hubs and crediting stake- and shareholder variety could create added-value based on sustainable primary economic activities and their cascading activities.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/433/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202112.0129.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Olivia Coldrey; Paul Lant; Peta Ashworth; Philip LaRocco; Christine Eibs Singer;doi: 10.3390/en17153720
A transition to clean fuels and technology for cooking is increasingly recognised as a cornerstone of sustainable development. However, sufficient, appropriate, affordable finance to support the transition is lacking. Grounded in primary data collection via expert interviews, this study’s research objective was to critically assess development finance institutions’ (DFIs) delivery of climate and development finance to address cooking poverty. Interview findings underscore DFIs’ important role in the transition, including to create the ecosystem conditions conducive to sustained investment. However, as a group they are not demonstrating the risk appetite and financial solutions that clean cooking markets need. Nor are they operating with the agility and flexibility required for rapid scale-up. Consequently, DFIs are not optimally fulfilling their mandates to create additionality and mobilise private capital in these markets. Interviewees call for DFIs to reconsider their approach, and we rely on these findings to posit a theory of change for clean cooking finance.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 AustriaPublisher:MDPI AG Olivia Coldrey; Paul Lant; Peta Ashworth; Philip LaRocco; Christine Eibs Singer;doi: 10.3390/en17153720
A transition to clean fuels and technology for cooking is increasingly recognised as a cornerstone of sustainable development. However, sufficient, appropriate, affordable finance to support the transition is lacking. Grounded in primary data collection via expert interviews, this study’s research objective was to critically assess development finance institutions’ (DFIs) delivery of climate and development finance to address cooking poverty. Interview findings underscore DFIs’ important role in the transition, including to create the ecosystem conditions conducive to sustained investment. However, as a group they are not demonstrating the risk appetite and financial solutions that clean cooking markets need. Nor are they operating with the agility and flexibility required for rapid scale-up. Consequently, DFIs are not optimally fulfilling their mandates to create additionality and mobilise private capital in these markets. Interviewees call for DFIs to reconsider their approach, and we rely on these findings to posit a theory of change for clean cooking finance.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17153720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | Demo4GridEC| Demo4GridEmmanuel Stamatakis; Ewald Perwög; Ermis Garyfallos; Mercedes Millán; Emmanuel Zoulias; Nikolaos Chalkiadakis;doi: 10.3390/en15020637
To limit the global temperature change to no more than 2 °C by reducing global emissions, the European Union (EU) set up a goal of a 20% improvement on energy efficiency, a 20% cut of greenhouse gas emissions, and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE), specifically in the transport sector). By 2030, the goal is a 27% improvement in energy efficiency, a 40% cut of greenhouse gas emissions, and a 27% share of RE. However, the integration of RE in energy system faces multiple challenges. The geographical distribution of energy supply changes significantly the availability of the primary energy source (wind, solar, water) and is the determining factor, rather than where the consumers are. This leads to an increasing demand to match supply and demand for power. Especially intermittent RE like wind and solar power face the issue of energy production unrelated to demand (issue of excess energy production beyond demand and/or grid capacity) and forecast errors leading to an increasing demand for grid services like balancing power. Megawatt electrolyzer units (beyond 3 MW) can provide a technical solution to convert large amounts of excess electricity into hydrogen for industrial applications, substitute for natural gas, or the decarbonization of the mobility sector. The demonstration of successful MW electrolyzer operation providing grid services under dynamic conditions as request by the grid can broaden the opportunities of new business models that demonstrate the profitability of an electrolyzer in these market conditions. The aim of this work is the demonstration of a technical solution utilizing Pressurized Alkaline Electrolyzer (PAE) technology for providing grid balancing services and harvesting Renewable Energy Sources (RES) under realistic circumstances. In order to identify any differences between local market and grid requirements, the work focused on a demonstration site located in Austria, deemed as a viable business case for the operation of a large-scale electrolyzer. The site is adapted to specific local conditions commonly found throughout Europe. To achieve this, this study uses a market-based solution that aims at providing value-adding services and cash inflows, stemming from the grid balancing services it provides. Moreover, the work assesses the viability of various business cases by analyzing (qualitatively and quantitatively) additional business models (in terms of business opportunities/energy source, potential grid service provision, and hydrogen demand) and analyzing the value and size of the markets developing recommendations for relevant stakeholder to decrease market barriers.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 11 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | Demo4GridEC| Demo4GridEmmanuel Stamatakis; Ewald Perwög; Ermis Garyfallos; Mercedes Millán; Emmanuel Zoulias; Nikolaos Chalkiadakis;doi: 10.3390/en15020637
To limit the global temperature change to no more than 2 °C by reducing global emissions, the European Union (EU) set up a goal of a 20% improvement on energy efficiency, a 20% cut of greenhouse gas emissions, and a 20% share of energy from renewable sources by 2020 (10% share of renewable energy (RE), specifically in the transport sector). By 2030, the goal is a 27% improvement in energy efficiency, a 40% cut of greenhouse gas emissions, and a 27% share of RE. However, the integration of RE in energy system faces multiple challenges. The geographical distribution of energy supply changes significantly the availability of the primary energy source (wind, solar, water) and is the determining factor, rather than where the consumers are. This leads to an increasing demand to match supply and demand for power. Especially intermittent RE like wind and solar power face the issue of energy production unrelated to demand (issue of excess energy production beyond demand and/or grid capacity) and forecast errors leading to an increasing demand for grid services like balancing power. Megawatt electrolyzer units (beyond 3 MW) can provide a technical solution to convert large amounts of excess electricity into hydrogen for industrial applications, substitute for natural gas, or the decarbonization of the mobility sector. The demonstration of successful MW electrolyzer operation providing grid services under dynamic conditions as request by the grid can broaden the opportunities of new business models that demonstrate the profitability of an electrolyzer in these market conditions. The aim of this work is the demonstration of a technical solution utilizing Pressurized Alkaline Electrolyzer (PAE) technology for providing grid balancing services and harvesting Renewable Energy Sources (RES) under realistic circumstances. In order to identify any differences between local market and grid requirements, the work focused on a demonstration site located in Austria, deemed as a viable business case for the operation of a large-scale electrolyzer. The site is adapted to specific local conditions commonly found throughout Europe. To achieve this, this study uses a market-based solution that aims at providing value-adding services and cash inflows, stemming from the grid balancing services it provides. Moreover, the work assesses the viability of various business cases by analyzing (qualitatively and quantitatively) additional business models (in terms of business opportunities/energy source, potential grid service provision, and hydrogen demand) and analyzing the value and size of the markets developing recommendations for relevant stakeholder to decrease market barriers.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 11 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/15/2/637/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15020637&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Sweden, AustriaPublisher:MDPI AG Fumi Harahap; Sylvain Leduc; Sennai Mesfun; Dilip Khatiwada; Florian Kraxner; Semida Silveira;doi: 10.3390/en12030420
Significant amounts of biomass residues were generated in Indonesia. While untreated, residues emit greenhouse gases during the decomposition process. On the other hand, if efficiently utilized, these residues could be used to produce value-added products. This study investigates opportunities for harnessing the full potential of palm oil residues (i.e., empty fruit bunches, kernel shells, fiber, and mill effluent). As far as we are aware, the study is the first attempt to model the palm oil supply chain in a geographically explicit way while considering regional infrastructures in Sumatra Island, Indonesia. The BeWhere model, a mixed integer linear programming model for energy system optimization, was used to assess the costs and benefits of optimizing the regional palm oil supply chain. Different scenarios were investigated, considering current policies and new practices leading to improved yields in small-scale plantations and power grid connectivity. The study shows that a more efficient palm oil supply chain can pave the way for the country to meet up to 50% of its national bioenergy targets by 2025, and emission reductions of up to 40 MtCO2eq/year. As much as 50% of the electricity demand in Sumatra could be met if residues are efficiently used and grid connections are available. We recommend that system improvements be done in stages. In the short to medium term, improving the smallholder plantation yield is the most optimal way to maximize regional economic gains from the palm oil industry. In the medium to long term, improving electricity grid connection to palm oil mills could bring higher economic value as excess electricity is commercialized.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Sweden, AustriaPublisher:MDPI AG Fumi Harahap; Sylvain Leduc; Sennai Mesfun; Dilip Khatiwada; Florian Kraxner; Semida Silveira;doi: 10.3390/en12030420
Significant amounts of biomass residues were generated in Indonesia. While untreated, residues emit greenhouse gases during the decomposition process. On the other hand, if efficiently utilized, these residues could be used to produce value-added products. This study investigates opportunities for harnessing the full potential of palm oil residues (i.e., empty fruit bunches, kernel shells, fiber, and mill effluent). As far as we are aware, the study is the first attempt to model the palm oil supply chain in a geographically explicit way while considering regional infrastructures in Sumatra Island, Indonesia. The BeWhere model, a mixed integer linear programming model for energy system optimization, was used to assess the costs and benefits of optimizing the regional palm oil supply chain. Different scenarios were investigated, considering current policies and new practices leading to improved yields in small-scale plantations and power grid connectivity. The study shows that a more efficient palm oil supply chain can pave the way for the country to meet up to 50% of its national bioenergy targets by 2025, and emission reductions of up to 40 MtCO2eq/year. As much as 50% of the electricity demand in Sumatra could be met if residues are efficiently used and grid connections are available. We recommend that system improvements be done in stages. In the short to medium term, improving the smallholder plantation yield is the most optimal way to maximize regional economic gains from the palm oil industry. In the medium to long term, improving electricity grid connection to palm oil mills could bring higher economic value as excess electricity is commercialized.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/3/420/pdfData sources: Multidisciplinary Digital Publishing InstituteDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | LONGRUN, EC | uCAReEC| LONGRUN ,EC| uCAReMartin Opetnik; Stefan Hausberger; Claus Uwe Matzer; Silke Lipp; Lukas Landl; Konstantin Weller; Miriam Elser;doi: 10.3390/en17092052
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:EC | LONGRUN, EC | uCAReEC| LONGRUN ,EC| uCAReMartin Opetnik; Stefan Hausberger; Claus Uwe Matzer; Silke Lipp; Lukas Landl; Konstantin Weller; Miriam Elser;doi: 10.3390/en17092052
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17092052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu