- home
- Advanced Search
- Energy Research
- AT
- Energy Research
- AT
description Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2021Embargo end date: 12 May 2022 Austria, Austria, France, Austria, Switzerland, Sweden, SwitzerlandPublisher:eLife Sciences Publications, Ltd Funded by:EC | NICH, ANR | TransAlp, SNSF | Timescales of changing sp... +2 projectsEC| NICH ,ANR| TransAlp ,SNSF| Timescales of changing species interactions under warming climate ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,SNSF| Ecological consequences of novel plant-soil interactions under changing climateTom W. N. Walker; Konstantin Gavazov; Thomas Guillaume; Thibault Lambert; Pierre Mariotte; Devin Routh; Constant Signarbieux; Sebastián Block; Tamara Münkemüller; Hanna Nomoto; Thomas W. Crowther; Andreas Richter; Alexandre Buttler; Jake M. Alexander;Climate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown. Here, we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% confidence intervals) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration, and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.
eLife arrow_drop_down eLifeArticleLicense: CC BYFull-Text: https://elifesciences.org/articles/78555Data sources: SygmaUniversité Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2022License: CC BYPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.78555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert eLife arrow_drop_down eLifeArticleLicense: CC BYFull-Text: https://elifesciences.org/articles/78555Data sources: SygmaUniversité Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2022License: CC BYPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.78555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Research , Preprint 2021Embargo end date: 12 May 2022 Austria, Austria, France, Austria, Switzerland, Sweden, SwitzerlandPublisher:eLife Sciences Publications, Ltd Funded by:EC | NICH, ANR | TransAlp, SNSF | Timescales of changing sp... +2 projectsEC| NICH ,ANR| TransAlp ,SNSF| Timescales of changing species interactions under warming climate ,SNSF| Can forest expansion in mountain ecosystems generate a positive feedback to climate change: the unseen role of symbiotic mycorrhizae ,SNSF| Ecological consequences of novel plant-soil interactions under changing climateTom W. N. Walker; Konstantin Gavazov; Thomas Guillaume; Thibault Lambert; Pierre Mariotte; Devin Routh; Constant Signarbieux; Sebastián Block; Tamara Münkemüller; Hanna Nomoto; Thomas W. Crowther; Andreas Richter; Alexandre Buttler; Jake M. Alexander;Climate warming is releasing carbon from soils around the world, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown. Here, we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% confidence intervals) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration, and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.
eLife arrow_drop_down eLifeArticleLicense: CC BYFull-Text: https://elifesciences.org/articles/78555Data sources: SygmaUniversité Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2022License: CC BYPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.78555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert eLife arrow_drop_down eLifeArticleLicense: CC BYFull-Text: https://elifesciences.org/articles/78555Data sources: SygmaUniversité Grenoble Alpes: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2022Full-Text: https://hal.science/hal-03771643Data sources: Bielefeld Academic Search Engine (BASE)Permanent Hosting, Archiving and Indexing of Digital Resources and AssetsArticle . 2022License: CC BYPublikationer från Umeå universitetArticle . 2022 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2022 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7554/elife.78555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu