Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • AT

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jorge Aldea; Ricardo Ruiz-Peinado; Miren del Río; Hans Pretzsch; +11 Authors

    12 Pág. Mixed forests are suggested as a strategic adaptation of forest management to climate change. Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) are tree species of high economic and ecological value for European forestry. Both species coexist naturally in a large part of their distributions but there is a lack of knowledge on the ecological functioning of mixtures of these species and how to manage such stands. This paper analyses these species’ intra- and inter-specific competition, including size-symmetric vs. size-asymmetric competition, and explore the effect of weather conditions on tree growth and competition. We studied basal area growth at tree level for Scots pine and Norway spruce in mixed versus pure stands in 22 triplets of fully-stocked plots along a broad range of ecological conditions across Europe. Stand inventory and increment cores provided insights into how species mixing modifies tree growth compared with neighbouring pure stands. Five different competition indices, weather variables and their interactions were included and checked in basal area growth models using a linear mixed model approach. Interspecific size-asymmetric competition strongly influenced growth for both tree species, and was modulated by weather conditions. However, species height stratification in mixed stands resulted in a greater tree basal area growth of Scots pine (10.5 cm2 year−1) than in pure stands (9.3 cm2 year−1), as this species occupies the upper canopy layer. Scots pine growth depended on temperature and drought, whereas Norway spruce growth was influenced only by drought. Interspecific site-asymmetric competition increased in cold winters for Scots pine, and decreased after a drought year for Norway spruce. Although mixtures of these species may reduce tree size for Norway spruce, our results suggest that this could be offset by faster growth in Scots pine. How inter-specific competition and weather conditions alter tree growth may have strong implications for the management of Scots pine-Norway spruce mixtures along the rotation period into the ongoing climate change scenario. The networking of this study was supported by the REFORM project (number FR-2017/0001, Resilience of forest mixtures: Mixed Species forest management. Lowering risk, increasing resilience) from the ERA-Net Sumforest. We thank national funders of REFORM project (Spanish Ministry of Science and Innovation: PCIN2017-026, Research Council of Lithuania (LMTLT) S-SUMFOREST-17-1, Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) FR-2017/0001) and those funders for the support to non-participants in the REFORM project (Denmark: Contract between Danish Ministry of Environment and Food and Department of Geosciences and Natural Resource Management of UCPH; Estonia: Estonian University of Life Sciences projects number P180024MIME and P200029MIME; Poland: EU CARE4C project (GA 778322) supported by the Polish Government MNiSW2018-2021 matching fund (W117/H2020/2018); Slovakia: APVV-15-0265). We also thank to all national project partners and forest owners who allowed us to establish and measure the triplets in this study. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecology and M...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital.CSIC
    Article . 2021 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads11
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecology and M...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Forest Ecology and Management
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Forest Ecology and Management
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital.CSIC
      Article . 2021 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jorge Aldea; Ricardo Ruiz-Peinado; Miren del Río; Hans Pretzsch; +11 Authors

    12 Pág. Mixed forests are suggested as a strategic adaptation of forest management to climate change. Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) are tree species of high economic and ecological value for European forestry. Both species coexist naturally in a large part of their distributions but there is a lack of knowledge on the ecological functioning of mixtures of these species and how to manage such stands. This paper analyses these species’ intra- and inter-specific competition, including size-symmetric vs. size-asymmetric competition, and explore the effect of weather conditions on tree growth and competition. We studied basal area growth at tree level for Scots pine and Norway spruce in mixed versus pure stands in 22 triplets of fully-stocked plots along a broad range of ecological conditions across Europe. Stand inventory and increment cores provided insights into how species mixing modifies tree growth compared with neighbouring pure stands. Five different competition indices, weather variables and their interactions were included and checked in basal area growth models using a linear mixed model approach. Interspecific size-asymmetric competition strongly influenced growth for both tree species, and was modulated by weather conditions. However, species height stratification in mixed stands resulted in a greater tree basal area growth of Scots pine (10.5 cm2 year−1) than in pure stands (9.3 cm2 year−1), as this species occupies the upper canopy layer. Scots pine growth depended on temperature and drought, whereas Norway spruce growth was influenced only by drought. Interspecific site-asymmetric competition increased in cold winters for Scots pine, and decreased after a drought year for Norway spruce. Although mixtures of these species may reduce tree size for Norway spruce, our results suggest that this could be offset by faster growth in Scots pine. How inter-specific competition and weather conditions alter tree growth may have strong implications for the management of Scots pine-Norway spruce mixtures along the rotation period into the ongoing climate change scenario. The networking of this study was supported by the REFORM project (number FR-2017/0001, Resilience of forest mixtures: Mixed Species forest management. Lowering risk, increasing resilience) from the ERA-Net Sumforest. We thank national funders of REFORM project (Spanish Ministry of Science and Innovation: PCIN2017-026, Research Council of Lithuania (LMTLT) S-SUMFOREST-17-1, Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) FR-2017/0001) and those funders for the support to non-participants in the REFORM project (Denmark: Contract between Danish Ministry of Environment and Food and Department of Geosciences and Natural Resource Management of UCPH; Estonia: Estonian University of Life Sciences projects number P180024MIME and P200029MIME; Poland: EU CARE4C project (GA 778322) supported by the Polish Government MNiSW2018-2021 matching fund (W117/H2020/2018); Slovakia: APVV-15-0265). We also thank to all national project partners and forest owners who allowed us to establish and measure the triplets in this study. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecology and M...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Forest Ecology and Management
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Digital.CSIC
    Article . 2021 . Peer-reviewed
    Data sources: Digital.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    hybrid
    20
    citations20
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility2
    visibilityviews2
    downloaddownloads11
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Forest Ecology and M...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Forest Ecology and Management
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Forest Ecology and Management
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Digital.CSIC
      Article . 2021 . Peer-reviewed
      Data sources: Digital.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph