- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- AT
- Energy Research
- AT
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Sweden, SpainPublisher:Elsevier BV Jorge Aldea; Ricardo Ruiz-Peinado; Miren del Río; Hans Pretzsch; Michael Heym; Gediminas Brazaitis; Aris Jansons; Marek Metslaid; Ignacio Barbeito; Kamil Bielak; Aksel Granhus; Stig-Olof Holm; Arne Nothdurft; Roman Sitko; Magnus Löf;handle: 10261/335686
12 Pág. Mixed forests are suggested as a strategic adaptation of forest management to climate change. Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) are tree species of high economic and ecological value for European forestry. Both species coexist naturally in a large part of their distributions but there is a lack of knowledge on the ecological functioning of mixtures of these species and how to manage such stands. This paper analyses these species’ intra- and inter-specific competition, including size-symmetric vs. size-asymmetric competition, and explore the effect of weather conditions on tree growth and competition. We studied basal area growth at tree level for Scots pine and Norway spruce in mixed versus pure stands in 22 triplets of fully-stocked plots along a broad range of ecological conditions across Europe. Stand inventory and increment cores provided insights into how species mixing modifies tree growth compared with neighbouring pure stands. Five different competition indices, weather variables and their interactions were included and checked in basal area growth models using a linear mixed model approach. Interspecific size-asymmetric competition strongly influenced growth for both tree species, and was modulated by weather conditions. However, species height stratification in mixed stands resulted in a greater tree basal area growth of Scots pine (10.5 cm2 year−1) than in pure stands (9.3 cm2 year−1), as this species occupies the upper canopy layer. Scots pine growth depended on temperature and drought, whereas Norway spruce growth was influenced only by drought. Interspecific site-asymmetric competition increased in cold winters for Scots pine, and decreased after a drought year for Norway spruce. Although mixtures of these species may reduce tree size for Norway spruce, our results suggest that this could be offset by faster growth in Scots pine. How inter-specific competition and weather conditions alter tree growth may have strong implications for the management of Scots pine-Norway spruce mixtures along the rotation period into the ongoing climate change scenario. The networking of this study was supported by the REFORM project (number FR-2017/0001, Resilience of forest mixtures: Mixed Species forest management. Lowering risk, increasing resilience) from the ERA-Net Sumforest. We thank national funders of REFORM project (Spanish Ministry of Science and Innovation: PCIN2017-026, Research Council of Lithuania (LMTLT) S-SUMFOREST-17-1, Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) FR-2017/0001) and those funders for the support to non-participants in the REFORM project (Denmark: Contract between Danish Ministry of Environment and Food and Department of Geosciences and Natural Resource Management of UCPH; Estonia: Estonian University of Life Sciences projects number P180024MIME and P200029MIME; Poland: EU CARE4C project (GA 778322) supported by the Polish Government MNiSW2018-2021 matching fund (W117/H2020/2018); Slovakia: APVV-15-0265). We also thank to all national project partners and forest owners who allowed us to establish and measure the triplets in this study. Peer reviewed
Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 11 Powered bymore_vert Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Sweden, SpainPublisher:Elsevier BV Jorge Aldea; Ricardo Ruiz-Peinado; Miren del Río; Hans Pretzsch; Michael Heym; Gediminas Brazaitis; Aris Jansons; Marek Metslaid; Ignacio Barbeito; Kamil Bielak; Aksel Granhus; Stig-Olof Holm; Arne Nothdurft; Roman Sitko; Magnus Löf;handle: 10261/335686
12 Pág. Mixed forests are suggested as a strategic adaptation of forest management to climate change. Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) are tree species of high economic and ecological value for European forestry. Both species coexist naturally in a large part of their distributions but there is a lack of knowledge on the ecological functioning of mixtures of these species and how to manage such stands. This paper analyses these species’ intra- and inter-specific competition, including size-symmetric vs. size-asymmetric competition, and explore the effect of weather conditions on tree growth and competition. We studied basal area growth at tree level for Scots pine and Norway spruce in mixed versus pure stands in 22 triplets of fully-stocked plots along a broad range of ecological conditions across Europe. Stand inventory and increment cores provided insights into how species mixing modifies tree growth compared with neighbouring pure stands. Five different competition indices, weather variables and their interactions were included and checked in basal area growth models using a linear mixed model approach. Interspecific size-asymmetric competition strongly influenced growth for both tree species, and was modulated by weather conditions. However, species height stratification in mixed stands resulted in a greater tree basal area growth of Scots pine (10.5 cm2 year−1) than in pure stands (9.3 cm2 year−1), as this species occupies the upper canopy layer. Scots pine growth depended on temperature and drought, whereas Norway spruce growth was influenced only by drought. Interspecific site-asymmetric competition increased in cold winters for Scots pine, and decreased after a drought year for Norway spruce. Although mixtures of these species may reduce tree size for Norway spruce, our results suggest that this could be offset by faster growth in Scots pine. How inter-specific competition and weather conditions alter tree growth may have strong implications for the management of Scots pine-Norway spruce mixtures along the rotation period into the ongoing climate change scenario. The networking of this study was supported by the REFORM project (number FR-2017/0001, Resilience of forest mixtures: Mixed Species forest management. Lowering risk, increasing resilience) from the ERA-Net Sumforest. We thank national funders of REFORM project (Spanish Ministry of Science and Innovation: PCIN2017-026, Research Council of Lithuania (LMTLT) S-SUMFOREST-17-1, Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) FR-2017/0001) and those funders for the support to non-participants in the REFORM project (Denmark: Contract between Danish Ministry of Environment and Food and Department of Geosciences and Natural Resource Management of UCPH; Estonia: Estonian University of Life Sciences projects number P180024MIME and P200029MIME; Poland: EU CARE4C project (GA 778322) supported by the Polish Government MNiSW2018-2021 matching fund (W117/H2020/2018); Slovakia: APVV-15-0265). We also thank to all national project partners and forest owners who allowed us to establish and measure the triplets in this study. Peer reviewed
Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 11 Powered bymore_vert Forest Ecology and M... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2020.118697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu