- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- AT
- Energy Research
- AT
description Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Inês S. Martins; Franziska Schrodt; Shane A. Blowes; Amanda E. Bates; Anne D. Bjorkman; Viviana Brambilla; Juan Carvajal-Quintero; Cher F. Y. Chow; Gergana N. Daskalova; Kyle Edwards; Nico Eisenhauer; Richard Field; Ada Fontrodona-Eslava; Jonathan J. Henn; Roel van Klink; Joshua S. Madin; Anne E. Magurran; Michael McWilliam; Faye Moyes; Brittany Pugh; Alban Sagouis; Isaac Trindade-Santos; Brian J. McGill; Jonathan M. Chase; Maria Dornelas;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:American Association for the Advancement of Science (AAAS) Inês S. Martins; Franziska Schrodt; Shane A. Blowes; Amanda E. Bates; Anne D. Bjorkman; Viviana Brambilla; Juan Carvajal-Quintero; Cher F. Y. Chow; Gergana N. Daskalova; Kyle Edwards; Nico Eisenhauer; Richard Field; Ada Fontrodona-Eslava; Jonathan J. Henn; Roel van Klink; Joshua S. Madin; Anne E. Magurran; Michael McWilliam; Faye Moyes; Brittany Pugh; Alban Sagouis; Isaac Trindade-Santos; Brian J. McGill; Jonathan M. Chase; Maria Dornelas;pmid: 37676959
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.adg6006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu