- home
- Advanced Search
- Energy Research
- AU
- BG
- Energy Research
- AU
- BG
Research data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Aug 2022Publisher:Dryad Authors:Teo, Hoong Chen;
Raghavan, Srivatsan; He, Xiaogang; Zeng, Zhenzhong; +9 AuthorsTeo, Hoong Chen
Teo, Hoong Chen in OpenAIRETeo, Hoong Chen;
Raghavan, Srivatsan; He, Xiaogang; Zeng, Zhenzhong; Cheng, Yanyan; Luo, Xiangzhong; Lechner, Alex; Ashfold, Matthew; Lamba, Aakash; Sreekar, Rachakonda; Zheng, Qiming; Chen, Anping; Koh, Lian Pin;Teo, Hoong Chen
Teo, Hoong Chen in OpenAIRELarge-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modelling for the period 2041–2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < 0.05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience non-significant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation. This dataset contains raw data outputs for Teo et al. (2022), Global Change Biology. Please see the published paper for further details on methods. For enquiries, please contact the corresponding authors: hcteo [at] u.nus.edu or lianpinkoh [at] nus.edu.sg. Shapefiles can be opened with any GIS program such as ArcMap or QGIS. CSV files can be opened with any spreadsheet program such as Microsoft Excel or OpenOffice.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.5mkkwh78k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 19 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.5mkkwh78k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Embargo end date: 22 Mar 2024Publisher:Dryad Authors:Pelle, Tyler;
Greenbaum, Jamin; Ehrenfeucht, Shivani; Dow, Christine; +1 AuthorsPelle, Tyler
Pelle, Tyler in OpenAIREPelle, Tyler;
Greenbaum, Jamin; Ehrenfeucht, Shivani; Dow, Christine; McCormack, Felicity;Pelle, Tyler
Pelle, Tyler in OpenAIRE# Dataset: Subglacial freshwater driven speedup of East Antarctic outlet glacier retreat [https://doi.org/10.5061/dryad.1vhhmgr0b](https://doi.org/10.5061/dryad.1vhhmgr0b) Journal: Journal of Geophysical Research: Earth Surface Principle Investigator: * Tyler Pelle, Scripps Institution of Oceanography, University of California San Diego, [tpelle@ucsd.edu](mailto:tpelle@ucsd.edu) Co-Authors: * Dr. Jamin Greenbaum, Scripps Institution of Oceanography, University of California San Diego * Dr. Shivani Ehrenfeucht, Department of Geography and Environmental Management, University of Waterloo * Prof. Christine Dow, Department of Geography and Environmental Management, University of Waterloo * Dr. Felicity S. McCormack, Securing Antarctica's Environmental Future, School of Earth, Atmosphere, & Environment, Monash University Created on October 4, 2023 ## Description of the data and file structure ### File description: 1. runme.m - MATLAB script used to run coupled ISSM-GlaDS SSP5-8.5_{F,M} simulation - includes melt rate parameterization. 2. ssp585.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5 simulation. 3. ssp585_F.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{F} simulation. 4. ssp585_M.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{M} simulation. 5. ssp585_FM.mat – Yearly ice sheet model output from 2017-2100 for SSP5-8.5_{F,M} simulation. 6. ssp126.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6 simulation. 7. ssp126_F.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{F} simulation. 8. ssp126_M.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{M} simulation. 9. ssp126_FM.mat – Yearly ice sheet model output from 2017-2100 for SSP1-2.6_{F,M} simulation. 10. ssp585_Totten_T.mat - Bi-weekly ocean temperature (Ta) for Totten Glacier from January 1, 2017 to December 31, 2099 (high emission). 11. ssp585_Moscow_T.mat - Bi-weekly ocean temperature (Ta) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (high emission). 12. ssp585_Vander_T.mat - Bi-weekly ocean temperature (Ta) for Vander Glacier from January 1, 2017 to December 31, 2099 (high emission). 13. ssp585_Totten_S.mat - Bi-weekly ocean salinity (Sa) for Totten Glacier from January 1, 2017 to December 31, 2099 (high emission). 14. ssp585_Moscow_S.mat - Bi-weekly ocean salinity (Sa) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (high emission). 15. ssp585_Vander_S.mat - Bi-weekly ocean salinity (Sa) for Vander Glacier from January 1, 2017 to December 31, 2099 (high emission). 16. ssp126_Totten_T.mat - Bi-weekly ocean temperature (Ta) for Totten Glacier from January 1, 2017 to December 31, 2099 (low emission). 17. ssp126_Moscow_T.mat - Bi-weekly ocean temperature (Ta) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (low emission). 18. ssp126_Vander_T.mat - Bi-weekly ocean temperature (Ta) for Vander Glacier from January 1, 2017 to December 31, 2099 (low emission). 19. ssp126_Totten_S.mat - Bi-weekly ocean salinity (Sa) for Totten Glacier from January 1, 2017 to December 31, 2099 (low emission). 20. ssp126_Moscow_S.mat - Bi-weekly ocean salinity (Sa) for Moscow University Glacier from January 1, 2017 to December 31, 2099 (low emission). 21. ssp126_Vander_S.mat - Bi-weekly ocean salinity (Sa) for Vander Glacier from January 1, 2017 to December 31, 2099 (low emission). 22. TotBasin.exp - Polygon that contains Totten Glacier over which Totten's ocean temperature is applied. 23. MuisBasin.exp - Polygon that contains Moscow University Glacier over which Totten's ocean temperature is applied. 24. VandBasin.exp - Polygon that contains Vanderford Glacier over which Totten's ocean temperature is applied. ### File specific information: **ASB_IceHydroModel.mat**: All data associated with the ice sheet and subglacial hydrology model initial state is held in ASB_IceHydroModel.mat, which contains a MATLAB ‘model’ object (for more information, see [https://issm.jpl.nasa.gov/documentation/modelclass/](https://issm.jpl.nasa.gov/documentation/modelclass/). In MATLAB, the model can be loaded and displayed by running load(‘ASB_IceHydroModel.mat’), which will load in the model variable ‘md’. Of particular interest will be the following data contained in md: md.mesh (mesh information), md.geometry (initial ice sheet geometry, ice shelf geometry, and bed topography), md.hydrology (initial hydrology model fields), md.initialization (model initialization fields) and md.mask (ice mask and grounded ice mask). Note that all fields are defined on the mesh nodes, and one can plot a given field in MATLAB using the ISSM tool ‘plotmodel’ (e.g., plotmodel(md,'data',md.geometry.bed) will plot the model bed topography). For more information on plotting, please see [https://issm.jpl.nasa.gov/documentation/plotmatlab/](https://issm.jpl.nasa.gov/documentation/plotmatlab/). **Model output files (e.g. ssp585_FM.mat)**: Yearly ice sheet model results between 2017-2100 for all model simulations described in the paper. Fields appended with '*' are included in results with changing subglacial hydrology (ssp126_F, ssp126_M, ssp126_FM, ssp585_F, ssp585_M, ssp585_FM). Fields appended with '**' are included in results where ice shelf melt is enhanced by subglacial discharge (ssp126_M, ssp126_FM, ssp585_M, ssp585_FM). These files contain a MATLAB variable that is the same as the file name, which is a model object of size 1x83 that contains the following yearly variables: * \* Vel (velocity norm, m/yr) * \* Thickness (ice sheet thickness, m) * \* Surface (ice sheet surface elevation, m) * \* Base (ice sheet base elevation, m) * \* BasalforcingsFloatingiceMeltingRate (ice shelf basal melting rate field, m/yr) * \* MaskOceanLevelset (ground ice mask, grounded ice if > 0, grounding line position if = 0, floating ice if < 0) * \* IceVolume (total ice volume in the model domain, t) * \* IceVolumeAboveFloatation (total ice volume in the model domain that is above hydrostatic equilibrium, t) * \* TotalFloatingBmb (Total floating basal mass balance, Gt) * \* \\*ChannelDischarge\\_Node (GlaDS-computed channel discharge interpolated onto model node, m3/s) * \* \\*ChannelDiameter\\_Node (GlaDS-computed channel diameter interpolated onto model node, m) * \* \\*ChannelArea (GlaDS-computed channel area defined on model edges, m2) * \* \\*ChannelDischarge (GlaDS\\_computed channel discharge defined on model edges, m3/s) * \* \\*EffectivePressure (GlaDS-computed ice sheet effective pressure, Pa) * \* \\*HydraulicPotential (GlaDS computed hydraulic potential, - * \* \\*HydrologySheetThickness (GlaDS-computed after sheet thickness, m) * \* \\*GroundedIceMeltingRate (Grounded ice melting rate defined on all grounded nodes, m/yr) * \* \\*\\*melt\\_nodis (ice shelf basal melting rate computed when discharge is set to zero, m/yr) * \* \\*\\*zgl (grounding line height field, m) * \* \\*\\*glfw (grounding line fresh water flux field, m2/s) * \* \\*\\*chan\\_wid (Domain average subglacial discharge channel width, m) * \* \\*\\*maxdist (5L' length scale used in melt computation, m) * \* \\*\\*maxis (maximum discharge at each subglacial outflow location, m2/s) * \**\\*\\_T.mat**: Bi-weekly ocean temperature extracted from an East Antarctic configuration of the MITgcm (Pelle et al., 2021), where '\\*' ssp126 (low emission) or ssp585 (high emission). Ocean temperature was averaged adjacent to each target ice front in both depth and in the contours shown in figure 1b. * \**\\*\\_S.mat**: Same as above, but for salinity in units on the Practical Salinity Scale (PSU). * \***.exp**: Exp files that contain coordinates that outline a polygon for the drainage basins of each major glacier in this study (Vanderford Glacier contains the drainage basins for Adams, Bond, and Underwood Glaciers as well). Recent studies have revealed the presence of a complex freshwater system underlying the Aurora Subglacial Basin (ASB), a region of East Antarctica that contains ~7 m of global sea level potential in ice mainly grounded below sea level. Yet, the impact that subglacial freshwater has on driving the evolution of the dynamic outlet glaciers that drain this basin has yet to be tested in a coupled ice sheet-subglacial hydrology numerical modeling framework. Here, we project the evolution of the primary outlet glaciers draining the ASB (Moscow University Ice Shelf, Totten, Vanderford, and Adams Glaciers) in response to an evolving subglacial hydrology system and to ocean forcing through 2100, following low and high CMIP6 emission scenarios. By 2100, ice-hydrology feedbacks enhance the ASB’s 2100 sea level contribution by ~30% (7.50 mm to 9.80 mm) in high emission scenarios and accelerate retreat of Totten Glacier’s main ice stream by 25 years. Ice-hydrology feedbacks are particularly influential in the retreat of the Vanderford and Adams Glaciers, driving an additional 10 km of retreat in fully-coupled simulations relative to uncoupled simulations. Hydrology-driven ice shelf melt enhancements are the primary cause of domain-wide mass loss in low emission scenarios, but are secondary to ice sheet frictional feedbacks under high emission scenarios. The results presented here demonstrate that ice-subglacial hydrology interactions can significantly accelerate retreat of dynamic Antarctic glaciers and that future Antarctic sea level assessments that do not take these interactions into account might be severely underestimating Antarctic Ice Sheet mass loss. In this data publication, we present the model output and results associated with the following manuscript recently submitted to the Journal of Geophysical Research: Earth Surface: “Subglacial discharge accelerates ocean driven retreat of Aurora Subglacial Basin outlet glaciers over the 21st century”. We include yearly ice sheet model output between 2017-2100 for eight numerical ice-subglacial hydrology model runs. We also include the ice sheet and subglacial hydrology model initial states. In addition, we include all ocean forcing time-series (temperature and salinity for the low emission and high emission climate forcing scenarios for three glacial regions), which are used as input into the melt parameterization. Lastly, we include a MATLAB script that contains the code used to couple the ice-subglacial hydrology models as well as a "readme" file with further information on all data in this publication. Ice sheet model results: Direct results taken from the Ice-sheet and Sea-level System Model (ISSM, Larour et al. 2012) with no processing applied, provided yearly as *.mat files. Ice sheet and subglacial hydrology model initial states: Initial state of the ice sheet model (ice geometry, mesh information, inversion results, etc.) and subglacial hydrology model (steady-state water column thickness, effective pressure, channelized discharge, etc.) containing Aurora Subglacial Basin outlet glaciers with no processing applied, provided as a *.mat file. The contents of the *.mat file is a MATLAB variable of class "model", which is compatible with ISSM. Model coupling script: Documented MATLAB script ready to run with the provided data sets. Ocean temperature and salinity timeseries: Bottom ocean temperature (°C) and salinity (PSU) timeseries (January 1st, 2017 through December 31, 2099) extracted from an East Antarctic configuration of the ocean component of the MITgcm (Pelle et al., 2021). Temperature and salinity are provided bi-weekly and averged both in depth and along the ice fronts of Moscow University, Totten, and Vanderford Glaciers (see white dashed contour in figure 1b of the main manuscript text). Data are provided as *.mat files. Polygons that provide locaion to apply ocean temperature and salinity: Polygons provided as a list of x/y coordinates (meters) are provided in three *.exp files that cover the drainage basins of Moscow University, Totten, and Vanderford Glaciers (the polygon for Vanderford also includes the drainage basins of Adams, Bond, and Underwood Glaciers).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgr0b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.1vhhmgr0b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors:Ziehn, Tilo;
Ziehn, Tilo
Ziehn, Tilo in OpenAIREChamberlain, Matthew;
Chamberlain, Matthew
Chamberlain, Matthew in OpenAIRELenton, Andrew;
Lenton, Andrew
Lenton, Andrew in OpenAIRELaw, Rachel;
+5 AuthorsLaw, Rachel
Law, Rachel in OpenAIREZiehn, Tilo;
Ziehn, Tilo
Ziehn, Tilo in OpenAIREChamberlain, Matthew;
Chamberlain, Matthew
Chamberlain, Matthew in OpenAIRELenton, Andrew;
Lenton, Andrew
Lenton, Andrew in OpenAIRELaw, Rachel;
Law, Rachel
Law, Rachel in OpenAIREBodman, Roger;
Bodman, Roger
Bodman, Roger in OpenAIREDix, Martin;
Dix, Martin
Dix, Martin in OpenAIREMackallah, Chloe;
Druken, Kelsey; Ridzwan, Syazwan Mohamed;Mackallah, Chloe
Mackallah, Chloe in OpenAIREProject: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.C4MIP.CSIRO.ACCESS-ESM1-5' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmicsae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmicsae&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | CORALASSISTEC| CORALASSISTAuthors:Lachs, Liam;
Lachs, Liam
Lachs, Liam in OpenAIREHumanes, Adriana;
Martinez, Helios;Humanes, Adriana
Humanes, Adriana in OpenAIREImage dataset used for a colour analysis of coral branches throughout a long-term marine heatwave emulation experiment using machine learning. Article: "Within population variability in coral heat tolerance indicates climate adaptation potential" by Humanes and Lachs et al. Code to analyse the dataset is found at 10.5281/zenodo.6256164. LL received funding from Natural Environment Research Council (NERC) ONE Planet Doctoral Training Partnership (NE/S007512/1).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6256189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 75visibility views 75 download downloads 8 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6256189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:MDPI AG Authors:Anne Rolton;
Lesley Rhodes;Anne Rolton
Anne Rolton in OpenAIREKate S. Hutson;
Kate S. Hutson
Kate S. Hutson in OpenAIRELaura Biessy;
+4 AuthorsLaura Biessy
Laura Biessy in OpenAIREAnne Rolton;
Lesley Rhodes;Anne Rolton
Anne Rolton in OpenAIREKate S. Hutson;
Kate S. Hutson
Kate S. Hutson in OpenAIRELaura Biessy;
Tony Bui; Lincoln MacKenzie;Laura Biessy
Laura Biessy in OpenAIREJane E. Symonds;
Kirsty F. Smith;Jane E. Symonds
Jane E. Symonds in OpenAIREHarmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Jing Ma;
Zhanbin Luo;Fu Chen;
Qianlin Zhu;Shaoliang Zhang;
Shaoliang Zhang
Shaoliang Zhang in OpenAIREGang-Jun Liu;
Gang-Jun Liu
Gang-Jun Liu in OpenAIREdoi: 10.3390/su10082804
A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:AMPCo doi: 10.5694/mja18.00624
pmid: 30107770
The Medical Journal ... arrow_drop_down The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert The Medical Journal ... arrow_drop_down The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00624&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Authors: Stewart, Arthur D.; Gardiner, Matthew; MacDonald, Jonathan; Williams, Hector;pmid: 32871351
Building, bridge or wind turbine maintenance requires manual dexterity tasks by a specialist rope-access trained workforce via two principal means: harness suspension of individual workers from above, or deployment of a suspended platform or cradle from which workers access the structure to be maintained. Currently no published research compares accuracy and efficiency of simulated maintenance tasks between these modalities. This study investigated manual dexterity task performance of peg placement and shape delineation in seated, standing and suspended environments in 16 healthy controls and 26 professional rope-access trained individuals. Both seated and standing assessments were superior to those suspended, and height of suspension, total mass and years of experience had no influence on the task outcome. These findings suggest that, where feasible, cradle suspension mechanisms which permit standing maintenance are favourable in terms of task efficacy and where feasible, should be considered for deployment in wind energy and other engineering applications.
OpenAIR@RGU (Robert ... arrow_drop_down OpenAIR@RGU (Robert Gordon University, Aberdeen)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apergo.2020.103247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert OpenAIR@RGU (Robert ... arrow_drop_down OpenAIR@RGU (Robert Gordon University, Aberdeen)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apergo.2020.103247&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989 AustraliaPublisher:Wiley AbstractCumulus‐intact and ‐denuded unfertilized oocytes from two mouse strains were exposed to 1.5 m ethanol (EtOH) or two cryoproteclant solutions, 1.5 M propanediol (PROH) or 1.5 M dimethylsulfoxide (DMSO), for 4.5 min at 27°C, and the proportion of activating or degenerating oocytes studied. Exposure to DMSO did not significantly increase activation above that of oocytes not exposed to DMSO. Treatment of oocytes in PROH resulted in the activation of up to 87% of viable oocytes. This was significantly higher (P <01) than in control oocytes and comparable to the rate of activation after treatment with EtOH (59–96% activation). In solutions at 1°C, 47% of control oocytes were activated, which was not significantly different from the rate of activation in EtOH (36%) or PROH (50%) at 1°C. Following treatment with PROH, up to 87% of oocytes degenerated within a period of 6 h in vitro. The age of the oocytes (h post hCG) and the time of cumulus removal with the enzyme hyaluronidase, relative to the time of exposure to the chemicals, influenced the level of degeneration in most groups. Significantly fewer oocytes degenerated when cumulus cells were removed before treatment (0–31%) than when the cumulus was left intact throughout the treatment and 6 h culture period (10–87%). Exposure to PROH at 1°C reduced oocyte degeneration to 5%. We conclude that PROH causes significantly greater losses of oocytes as a result of parthenogenetic activation and degeneration than of exposure to DMSO.
Gamete Research arrow_drop_down Gamete ResearchArticle . 1989 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 1989Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mrd.1120240304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Gamete Research arrow_drop_down Gamete ResearchArticle . 1989 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 1989Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/mrd.1120240304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Bilin Shao; Tingyang Gu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.11.389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.11.389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu