- home
- Advanced Search
- Energy Research
- 2021-2025
- 3. Good health
- US
- AU
- CA
- Energy Research
- 2021-2025
- 3. Good health
- US
- AU
- CA
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG doi: 10.3390/su15065048
The COVID-19 pandemic has tremendously affected the whole of human society worldwide. Travel patterns have greatly changed due to the increased risk perception and the governmental interventions regarding COVID-19. This study aimed to identify contributing factors to the changes in public and private transportation mode choice behavior in China after COVID-19 based on an online questionnaire survey. In the survey, travel behaviors in three periods were studied: before the outbreak (before 27 December 2019), the peak (from 20 January to 17 March 2020), and after the peak (from 18 March to the date of the survey). A series of random-parameter bivariate Probit models was developed to quantify the relationship between individual characteristics and the changes in travel mode choice. The key findings indicated that individual sociodemographic characteristics (e.g., gender, age, ownership, occupation, residence) have significant effects on the changes in mode choice behavior. Other key findings included (1) a higher propensity to use a taxi after the peak compared to urban public transportation (i.e., bus and subway); (2) a significant impact of age on the switch from public transit to private car and two-wheelers; (3) more obvious changes in private car and public transportation modes in more developed cities. The findings from this study are expected to be useful for establishing partial and resilient policies and ensuring sustainable mobility and travel equality in the post-pandemic era.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15065048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Chunxue Zhou; Henry H. Ruiz; Li Ling; Giulia Maurizi; Kenichi Sakamoto; Claudia G. Liberini; Ling Wang; Adrien Stanley; Hale E. Egritag; Sofia M. Sanz; Claudia Lindtner; Mary A. Butera;Christoph Buettner;
Christoph Buettner
Christoph Buettner in OpenAIREHepatic steatosis is a key initiating event in the pathogenesis of alcohol-associated liver disease (ALD), the most detrimental organ damage resulting from alcohol use disorder. However, the mechanisms by which alcohol induces steatosis remain incompletely understood. We have previously found that alcohol binging impairs brain insulin action, resulting in increased adipose tissue lipolysis by unrestraining sympathetic nervous system (SNS) outflow. Here, we examined whether an impaired brain-SNS-adipose tissue axis drives hepatic steatosis through unrestrained adipose tissue lipolysis and increased lipid flux to the liver.We examined the role of lipolysis, and the brain-SNS-adipose tissue axis and stress in alcohol induced hepatic triglyceride accumulation in a series of rodent models: pharmacological inhibition of the negative regulator of insulin signaling protein-tyrosine phosphatase 1β (PTP1b) in the rat brain, tyrosine hydroxylase (TH) knockout mice as a pharmacogenetic model of sympathectomy, adipocyte specific adipose triglyceride lipase (ATGL) knockout mice, wildtype (WT) mice treated with β3 adrenergic agonist or undergoing restraint stress.Intracerebral administration of a PTP1b inhibitor, inhibition of adipose tissue lipolysis and reduction of sympathetic outflow ameliorated alcohol induced steatosis. Conversely, induction of adipose tissue lipolysis through β3 adrenergic agonism or by restraint stress worsened alcohol induced steatosis.Brain insulin resistance through upregulation of PTP1b, increased sympathetic activity, and unrestrained adipose tissue lipolysis are key drivers of alcoholic steatosis. Targeting these drivers of steatosis may provide effective therapeutic strategies to ameliorate ALD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molmet.2023.101813&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.molmet.2023.101813&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Jan 2023Publisher:Dryad Floess, Emily; Grieshop, Andrew; Puzzolo, Elisa; Pope, Daniel; Leach, Nicholas; Smith, Christopher J.; Gill-Wiehl, Annelise; Landesman, Katherine;Bailis, Robert;
Bailis, Robert
Bailis, Robert in OpenAIRENearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s “Stated Policies” Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and short-lived climate forcers, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5 by over 6 Mt (99%) by 2040, which would substantially lower health risks from Household Air Pollution. Primary input data was collected from the following sources: Baseline household fuel choices - WHO household energy database (https://www.nature.com/articles/s41467-021-26036-x) End-use emissions - US EPA lifecycle assessment of household fuels (https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=339679&Lab=NRMRL&simplesearch=0&showcriteria=2&sortby=pubDate&timstype=Published+Report&datebeginpublishedpresented) Upstream emissions - Argonne National Labs GREET Model (https://greet.es.anl.gov/index.php) Current and future population estimates - UNECA (http://data.un.org/Explorer.aspx?d=EDATA) Input data was processed by defining household fuel choice scenarios, estimating national household fuel consumption based on these scenarios, and applying fuel-specific emission factors to create country-specific emission pathways. These emission pathways were input into the FaIR model (https://zenodo.org/record/5513022#.Yt_jfHbMLb0) which generated additional data for each scenario including time series of pollution concentrations, radiative forcing, and temperature changes. All data is provided in CSV format. Nothing proprietary is required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jq2bvq8d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 16 Oct 2022Publisher:Dryad Authors:Brown, Gregory P.;
Hudson, Cameron; Shine, Richard;Brown, Gregory P.
Brown, Gregory P. in OpenAIREVariation in food resources can result in dramatic fluctuations in the body condition of animals dependent on those resources. Decreases in body mass can disrupt patterns of energy allocation and impose stress, thereby altering immune function. In this study we investigated links between changes in body mass of captive cane toads (Rhinella marina), their circulating white blood cell populations, and their performance in immune assays. Captive toads that lost weight over a 3-month period had increased levels of monocytes and heterophils and reduced levels of eosinophils. Basophil and lymphocyte levels were unrelated to changes in mass. Because individuals that lost mass had higher heterophil levels but stable lymphocyte levels, the ratio of these cell types was also higher, partially consistent with a stress response. Phagocytic ability of whole blood was higher in toads that lost mass, due to increased circulating levels of phagocytic cells. Other measures of immune performance were unrelated to mass change. These results highlight the challenges faced by invasive species as they expand their range into novel environments which may impose substantial seasonal changes in food availability that were not present in the native range. Individuals facing energy restrictions may shift their immune function towards more economical and general avenues of combating pathogens.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.7m0cfxpz3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.7m0cfxpz3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:Gonzalez, Alan R.;
Gonzalez, Alan R.
Gonzalez, Alan R. in OpenAIRELin, Ting;
Lin, Ting
Lin, Ting in OpenAIRE{"references": ["Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., Zhou, H., Cai, Z., Wu, Y., Guo, R., Han, T., Xue, J., Boucher, O., Boucher, E., Chevallier, F., Tanaka, K., Wei, Y., Zhong, H., Kang, C., Zhang, N., Chen, B., Xi, F., Liu, M., Br\u00e9on, F.-M., Lu, Y., Zhang, Q., Guan, D., Gong, P., Kammen, D. M., He, K. & Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications 11, 5172 (2020). https://doi.org/10.1038/s41467-020-18922-7", "Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J. F., Matsumoto, K., Montzka, S. A., Raper, S. C. B., Riahi, K., Thomson, A., Velders, G. J. M., & van Vuuren, D. P. (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109(1\u20132), 213\u2013241. https://doi.org/10.1007/s10584-011-0156-z", "Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747\u2013756. https://doi.org/10.1038/nature08823", "Myhre, G., Highwood, E. J., Shine, K. P., & Stordal, F. (1998). New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25(14), 2715\u20132718. https://doi.org/10.1029/98gl01908", "Strassmann, K. M. and Joos, F. (2018). The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle\u2013climate simulations, Geosci. Model Dev., 11, 1887\u20131908, https://doi.org/10.5194/gmd-11-1887-2018", "Thomas, M. A., and Lin, T. (2018). A dual model for emulation of thermosteric and dynamic sea-level change. Climatic Change, 148(1\u20132), 311\u2013324. https://doi.org/10.1007/s10584-018-2198-y"]} Supplementary materials for Gonzalez, A. R., & Lin, T. (2022). Translated Emission Pathways (TEPs): Long-Term Simulations of COVID-19 CO2 Emissions and Thermosteric Sea Level Rise Projections. Earth's Future. In Press. Summary: This study introduces climate science to a broader audience by presenting an accessible research framework and environmental data related to the ongoing COVID-19 pandemic. A series of translated emission pathways (TEPs) were constructed based on the CO2 emission patterns from the various phases of COVID-19 response. In addition to resembling the forcing scenarios used within climate research, a thermosteric sea level rise analysis was incorporated to further emphasize the environmental benefits that can be obtained from long-term sustainability. As a promising start for including the general public in climate change discussion, this research promotes collective environmental action that mirrors the recommendations of the scientific community. We acknowledge the Carbon Monitor initiative (Liu et al., 2020) for providing the COVID-19 CO2 sectoral emission data used to construct the proposed TEPs. In addition, we acknowledge the developers of the BernSCM (Strassmann and Joos, 2018) that was utilized in this study to relate TEP CO2 emissions to their respective CO2 atmospheric concentrations. Furthermore, we thank the Texas Tech University McNair Scholars Program and the Multi-Hazard Sustainability (HazSus) research group for guidance and support throughout the course of this study. Analyses presented herein were performed using the RedRaider computing cluster at Texas Tech University. We thank the team at the High Performance Computing Center (HPCC) for their generous support. In addition, the equipment support from the Vice President for Research & Innovation for T.L.'s HazSus Research Group is gratefully acknowledged.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 87visibility views 87 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6506928&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Funded by:NIH | Supplement to Molecular a..., NIH | Molecular and Cellular Pa...NIH| Supplement to Molecular and Cellular Studies on Alcohol's Actions ,NIH| Molecular and Cellular Pathogenesis in AlcoholismAuthors:Carol A. Dannenhoffer;
Carol A. Dannenhoffer
Carol A. Dannenhoffer in OpenAIREAlexander Gómez‐A;
Alexander Gómez‐A
Alexander Gómez‐A in OpenAIREVictoria A. Macht;
Rayyanoor Jawad; +5 AuthorsVictoria A. Macht
Victoria A. Macht in OpenAIRECarol A. Dannenhoffer;
Carol A. Dannenhoffer
Carol A. Dannenhoffer in OpenAIREAlexander Gómez‐A;
Alexander Gómez‐A
Alexander Gómez‐A in OpenAIREVictoria A. Macht;
Rayyanoor Jawad; Elizabeth Blake Sutherland;Victoria A. Macht
Victoria A. Macht in OpenAIRERyan P. Vetreno;
Ryan P. Vetreno
Ryan P. Vetreno in OpenAIREFulton T. Crews;
Fulton T. Crews
Fulton T. Crews in OpenAIRECharlotte A. Boettiger;
Charlotte A. Boettiger
Charlotte A. Boettiger in OpenAIREDonita L. Robinson;
Donita L. Robinson
Donita L. Robinson in OpenAIREAbstractBackgroundBinge alcohol exposure during adolescence results in long‐lasting alterations in the brain and behavior. For example, adolescent intermittent ethanol (AIE) exposure in rodents results in long‐term loss of functional connectivity among prefrontal cortex (PFC) and striatal regions as well as a variety of neurochemical, molecular, and epigenetic alterations. Interneurons in the PFC and striatum play critical roles in behavioral flexibility and functional connectivity. For example, parvalbumin (PV) interneurons are known to contribute to neural synchrony and cholinergic interneurons contribute to strategy selection. Furthermore, extracellular perineuronal nets (PNNs) that surround some interneurons, particularly PV+ interneurons, further regulate cellular plasticity. The effect of AIE exposure on the expression of these markers within the PFC is not well understood.MethodsThe present study tested the hypothesis that AIE exposure reduces the expression of PV+ and choline acetyltransferase (ChAT)+ interneurons in the adult PFC and striatum and increases the related expression of PNNs (marked by binding of Wisteria floribunda agglutinin lectin) in adulthood. Male rats were exposed to AIE (5 g/kg/day, 2‐days‐on/2‐days‐off, i.e., P25 to P54) or water (CON), and brain tissue was harvested in adulthood (>P80). Immunohistochemistry and co‐immunofluorescence were used to assess the expression of ChAT, PV, and PNNs within the adult PFC and striatum following AIE exposure.ResultsChAT and PV interneuron densities in the striatum and PFC were unchanged after AIE exposure. However, PNN density in the PFC of AIE‐exposed rats was greater than in CON rats. Moreover, significantly more PV neurons were surrounded by PNNs in AIE‐exposed subjects than controls in both PFC subregions assessed: orbitofrontal cortex (CON = 34%; AIE = 40%) and medial PFC (CON = 10%; AIE = 14%).ConclusionsThese findings indicate that, following AIE exposure, PV interneuron expression in the adult PFC and striatum is unaltered, while PNNs surrounding these neurons are increased. This increase in PNNs may restrict the plasticity of the ensheathed neurons, thereby contributing to impaired microcircuitry in frontostriatal connectivity and related behavioral impairments.
https://www.biorxiv.... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.14810&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://www.biorxiv.... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.14810&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Australia, United KingdomPublisher:Cogitatio Authors:Hing-Wah Chau;
Ian Gilzean;Hing-Wah Chau
Hing-Wah Chau in OpenAIREElmira Jamei;
Elmira Jamei
Elmira Jamei in OpenAIRELesley Palmer;
+2 AuthorsLesley Palmer
Lesley Palmer in OpenAIREHing-Wah Chau;
Ian Gilzean;Hing-Wah Chau
Hing-Wah Chau in OpenAIREElmira Jamei;
Elmira Jamei
Elmira Jamei in OpenAIRELesley Palmer;
Terri Preece;Lesley Palmer
Lesley Palmer in OpenAIREMartin Quirke;
Martin Quirke
Martin Quirke in OpenAIREhandle: 1893/34586
Twenty-minute neighbourhoods highlight the importance of well-connected and mixed-used neighbourhoods and communities with proximate access to employment, essential services, public transport, and open spaces. Shorter distances together with re-prioritised public spaces encourage more active transport choices, resulting in public health benefits and reduced environmental pollution. Higher liveability brought about by mixed-use developments enables people to have equitable access to local facilities, amenities, and employment opportunities, promoting vibrancy, social cohesion, and intergenerational connections. The attributes of 20-minute neighbourhoods also combine to create places, that are acknowledged as friendly for all ages, address changing needs across the life course, and provide better support for the ageing population. Furthermore, there are indications that 20-minute neighbourhoods may be more resilient against many of the negative impacts of stringent public health protocols such as those implemented in periods of lockdown during the Covid-19 pandemic. In this article, we evaluate and compare planning policies and practices aimed at establishing 20-minute neighbourhoods in Melbourne (Australia) and Scotland (the UK). Using case studies, we discuss similarities and differences involved in using place-based approaches of 20-minute neighbourhoods to address 21st-century challenges in key areas of health and wellbeing, equity, environmental sustainability, and community resilience.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG doi: 10.3390/su15031762
Environmental factors may operate differently when relations are measured across different geographical locations, a phenomenon known as spatial non-stationarity. This study investigates the spatial non-stationarity effect of unhealthy food environments and green spaces on the T2DM prevalence rate at the neighborhood level in Toronto. This study also compares how the results vary between age groups, classified as all adults (20 and above), young adults (from 20 to 44), middle adulthood (from 45 to 64), and seniors (65 and above). The geographically weighted regression model is utilized to explore the impacts of spatial non-stationarity effects on the research results, which may lead to biased conclusions, which have often been ignored in past studies. The results from this study reveal that environmental variables dissimilarly affect T2DM prevalence rates among different age groups and neighborhoods in Toronto after controlling for socioeconomic factors. For example, the green space density yields positive associations with diabetes prevalence rates for elder generations but negative relationships for younger age groups in twenty-two and four neighborhoods, respectively, around Toronto East. The observed associations will provide beneficial suggestions to support government and public health authorities in designing education, prevention, and intervention programs targeting different neighborhoods to control the burden of diabetes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15031762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Authors:Sarah M. Simmons;
Jeff K. Caird; Frances Sterzer; Mark Asbridge;Sarah M. Simmons
Sarah M. Simmons in OpenAIREdoi: 10.1111/add.15770
pmid: 35083810
AbstractBackground and aimsCannabis and alcohol are frequently detected in fatal and injury motor vehicle crashes. While epidemiological meta‐analyses of cannabis and alcohol have found associations with an increase in crash risk, convergent evidence from driving performance measures is insufficiently quantitatively characterized. Our objectives were to quantify the magnitude of the effect of cannabis and alcohol—alone and in combination—on driving performance and behaviour.MethodsSystematic review and meta‐analysis. We systematically searched Academic Search Complete, CINAHL, Embase, Scopus, Google Scholar, MEDLINE, PsycINFO, SPORTDiscus and TRID. Of the 616 studies that underwent full‐text review, this meta‐analysis represents 57 studies and 1725 participants. We extracted data for hazard response time, lateral position variability, lane deviations or excursions, time out of lane, driving speed, driving speed variability, speed violations, time speeding, headway, headway variability and crashes from experimental driving studies (i.e. driving simulator, closed‐course, on‐road) involving cannabis and/or alcohol administration. We reported meta‐analyses of effect sizes using Hedges’ g and r.ResultsCannabis alone was associated with impaired lateral control [e.g. g = 0.331, 95% confidence interval (CI) = 0.212–0.451 for lateral position variability; g = 0.198, 95% CI = 0.001–0.395 for lane excursions) and decreased driving speed (g = –0.176, 95% CI = –0.298 to –0.053]. The combination of cannabis and alcohol was associated with greater driving performance decrements than either drug in isolation [e.g. g = 0.480, 95% CI = 0.096–0.865 for lateral position variability (combination versus alcohol); g = 0.525, 95% CI = 0.049–1.002 for time out of lane (versus alcohol); g = 0.336, 95% CI = 0.036–0.636 for lateral position variability (combination versus cannabis; g = 0.475, 95% CI = 0.002–0.949 for time out of lane (combination versus cannabis)]. Subgroup analyses indicated that the effects of cannabis on driving performance measures were similar to low blood alcohol concentrations. A scarcity of data and study heterogeneity limited the interpretation of some measures.ConclusionsThis meta‐analysis indicates that cannabis, like alcohol, impairs driving, and the combination of the two drugs is more detrimental to driving performance than either in isolation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/add.15770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/add.15770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Bentham Science Publishers Ltd. Authors: Hitesh Kumar Dewangan; Akriti Rai;Kamal Shah;
Kamal Shah
Kamal Shah in OpenAIRERajiv Sharma;
Rajiv Sharma
Rajiv Sharma in OpenAIREpmid: 35986540
Abstract: COVID-19, caused by the SARS-CoV-2 virus, has been expanding. SARS-CoV caused an outbreak in early 2000, while MERS-CoV had a similar expansion of illness in early 2010. Nanotechnology has been employed for nasal delivery of drugs to conquer a variety of challenges that emerge during mucosal administration. The role of nanotechnology is highly relevant to counter this “virus” nano enemy. This technique directs the safe and effective distribution of accessible therapeutic choices using tailored nanocarriers, as well as the interruption of virion assembly, by preventing the early contact of viral spike glycoprotein with host cell surface receptors. This study summarises what we know about earlier SARS-CoV and MERS-CoV illnesses, with the goal of better understanding the recently discovered SARS-CoV-2 virus. It also explains the progress made so far in creating COVID-19 vaccines/ treatments using existing methods. Furthermore, we studied nanotechnology- based vaccinations and therapeutic medications that are now undergoing clinical trials and other alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1872210516666220819104853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/1872210516666220819104853&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu