- home
- Advanced Search
- Energy Research
- 13. Climate action
- DE
- EU
- AU
- Delft University of Technology
- Energy Research
- 13. Climate action
- DE
- EU
- AU
- Delft University of Technology
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | GREENSYNGASEC| GREENSYNGASHartmut Spliethoff; Wiebren de Jong; M. Mayerhofer; P. Mitsakis; Xiangmei Meng; Matthias Gaderer;Gasification is considered to be a promising way to use biomass with high efficiency in combined heatand power production, for the production of second generation biofuels and in the chemical industry.Especially allothermal fluidized bed steam gasification produces a medium calorific, nitrogen free gassuitable for a variety of downstream processes. In general the raw product gas has to be cleaned fromcondensable hydrocarbons (tar) and conditioned (e.g. adjustment of the H2/CO-ratio) before downstreamuse. The operating conditions of the gasification reactor have a large impact on the quality of the productgas. Hence first steps to a product gas low in tar content can be undertaken directly in the reactor. In thisstudy the capability of influencing the tar content and gas composition by changing temperature (750?840 C), steam to biomass (S/B) ratio (0.8?1.2) and pressure (0.1?0.25 MPa) in an allothermal bubblingfluidized bed steam gasifier is investigated. It is found that rising temperature reduces the total tar contentand affects especially heterocyclic and light aromatic compounds. At atmospheric pressure the naphthalenecontent increases slightly with increasing temperature in contrary to pressurized gasificationwhere naphthalene decreases significantly with increasing temperature. An increase in the S/B ratio leadsto a decreasing total tar content, this tar reduction according to a higher steam content is higher at highertemperatures. Increasing pressure leads to increasing total tar content mainly due to naphthalene, theeffect is most distinct for low S/B ratios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 103 citations 103 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, GermanyPublisher:Elsevier BV Paul Fleuchaus; Simon Schüppler; Martin Bloemendal; Luca Guglielmetti; Oliver Opel; Philipp Blum;Abstract The storage of heat in aquifers, also referred to as Aquifer Thermal Energy Storage (ATES), bears a high potential to bridge the seasonal gap between periods of highest thermal energy demand and supply. With storage temperatures higher than 50 °C, High-Temperature (HT) ATES is capable to facilitate the integration of (non-)renewable heat sources into complex energy systems. While the complexity of ATES technology is positively correlated to the required storage temperature, HT-ATES faces multidisciplinary challenges and risks impeding a rapid market uptake worldwide. Therefore, the aim of this study is to provide an overview and analysis of these risks of HT-ATES to facilitate global technology adoption. Risk are identified considering experiences of past HT-ATES projects and analyzed by ATES and geothermal energy experts. An online survey among 38 international experts revealed that technical risks are expected to be less critical than legal, social and organizational risks. This is confirmed by the lessons learned from past HT-ATES projects, where high heat recovery values were achieved, and technical feasibility was demonstrated. Although HT-ATES is less flexible than competing technologies such as pits or buffer tanks, the main problems encountered are attributed to a loss of the heat source and fluctuating or decreasing heating demands. Considering that a HT-ATES system has a lifetime of more than 30 years, it is crucial to develop energy concepts which take into account the conditions both for heat sources and heat sinks. Finally, a site-specific risk analysis for HT-ATES in the city of Hamburg revealed that some risks strongly depend on local boundary conditions. A project-specific risk management is therefore indispensable and should be addressed in future research and project developments.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 135visibility views 135 download downloads 34 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: A.A. Tortosa Masiá; Bart J P Buhre; Terry Wall; Rajender Gupta;Deposits formation on heat transfer surfaces is one of the main problems associated to biomass co-combustion. It reduces plant efficiency and availability and increases maintenance costs. It is obvious that an increasing amount of low-temperature melting components in fuel ash accelerates and aggravates this process. Research is done to evaluate the validity of thermal analysis methods to characterise fusion of biomass and waste ashes. Laboratory ashes from a set of biomass and waste fuels are leached in successive steps. The original and the leached ashes are analysed by Thermo-Mechanical Analysis (TMA). Traces obtained from TMA show to be promising ash fingerprints to classify deposition tendencies. Additionally Simultaneous Thermal Analysis (STA) is performed on selected samples. Furthermore, improved chemical equilibrium calculations are proposed to predict the proportion of melted species resulting from combustion of biomass fuels. The model takes into account the reactivity of the inorganic matter in the fuel as issued from ash leaching.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 340 citations 340 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:MDPI AG Christian Schnuelle; Kasper Kisjes; Torben Stuehrmann; Pablo Thier; Igor Nikolic; Arnim von Gleich; Stefan Goessling-Reisemann;doi: 10.3390/en13205522
The transition process towards renewable energy systems is facing challenges in both fluctuating electricity generation of photovoltaic and wind power as well as socio-economic disruptions. With regard to sector integration, solutions need to be developed, especially for the mobility and the industry sector, because their ad hoc electrification and decarbonization seem to be unfeasible. Power-to-fuel (P2F) technologies may contribute to bridge the gap, as renewable energy can be transferred into hydrogen and hydrocarbon-based synthetic fuels. However, the renewable fuels production is far from economically competitive with conventional fuels. With a newly developed agent-based model, potential developments in the German energy markets were simulated for a horizon of 20 years from 2016 to 2035. The model was constructed through a participatory modeling process with relevant actors and stakeholders in the field. Model findings suggest that adjusted regulatory framework conditions (e.g., exemptions from electricity surtaxes, accurate prices for CO2-certificates, strong start-up subsidies, and drastic emission reduction quotas) are key factors for economically feasible P2F installations and will contribute to its large-scale integration into the German energy system. While plant capacities do not exceed 0.042 GW in a business-as-usual scenarios, the above-mentioned adjustments lead to plant capacities of at least 3.25 GW in 2035 with concurrent reduction in product prices.
Energies arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 31 Powered bymore_vert Energies arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:MDPI AG Authors: Olindo, Roberta (author); Schmitt, Nathalie (author); Vogtländer, J.G. (author);doi: 10.3390/su13095250
LCAs of electric cars and electrolytic hydrogen production are governed by the consumption of electricity. Therefore, LCA benchmarking is prone to choices on electricity data. There are four issues: (1) leading Life Cycle Impact (LCI) databases suffer from inconvenient uncertainties and inaccuracies, (2) electricity mix in countries is rapidly changing, year after year, (3) the electricity mix is strongly fluctuating on an hourly and daily basis, which requires time-based allocation approaches, and (4) how to deal with nuclear power in benchmarking. This analysis shows that: (a) the differences of the GHG emissions of the country production mix in leading databases are rather high (30%), (b) in LCA, a distinction must be made between bundled and unbundled registered electricity certificates (RECs) and guarantees of origin (GOs); the residual mix should not be applied in LCA because of its huge inaccuracy, (c) time-based allocation rules for renewables are required to cope with periods of overproduction, (d) benchmarking of electricity is highly affected by the choice of midpoints and/or endpoint systems, and (e) there is an urgent need for a new LCI database, based on measured emission data, continuously kept up-to-date, transparent, and open access.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 69visibility views 69 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Funded by:EC | BRISKEC| BRISKWiebren de Jong; Giacomo Spinelli; Manuela Di Marcello; Jaap H.A. Kiel; Jaap H.A. Kiel; Georgios Archimidis Tsalidis;Torrefaction is a promising biomass upgrading technology as it makes biomass more coal alike and offers benefits in logistics and handling operations. Gasification is an attractive thermochemical conversion technology due to its flexibility in the product gas end-uses. Therefore, it is valuable to investigate whether additional benefits are foreseen when torrefaction is coupled with gasification. Therefore, two commercial torrefied wood fuels and their parent materials are gasified at 800–850 °C under atmospheric steam-oxygen circulating fluidized bed gasification conditions and magnesite as bed material. The torrefied feedstocks consisted of wood residues torrefied by Topell at 250 °C (Topell black), and mixed wood and wood residues torrefied by Torrcoal at 300 °C (Torrcoal black). The gasification results show that torrefaction resulted in an increased gas quality, as it yielded higher H2 and CO contents, a decrease of the CO2 content, increased gas yield and a significant decrease of the total tar content for both feedstocks. For the Torrcoal samples, torrefaction resulted in a decrease in the carbon conversion efficiency (CCE). In addition, the cold gas efficiency (CGE) remained approximately the same due to the increase in the H2 and CO contents. The Topell samples showed an increase in the CCE and CGE upon torrefaction, but this could be attributed to a significant grinding in the screw feeder. It is generally concluded that both torrefied fuels may offer benefits as a feedstock for steam-oxygen blown circulating fluidized bed gasification, in particular in terms of gas quality and yield.
Biomass and Bioenerg... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 53visibility views 53 download downloads 117 Powered bymore_vert Biomass and Bioenerg... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Australia, NetherlandsPublisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYMorten Graversgaard; Beatrice Hedelin; Laurence Smith; Flemming Gertz; Anker Lajer Højberg; John Langford; Grit Martinez; Erik Mostert; Emilia Ptak; Heidi Peterson; Nico Stelljes; Cors Van den Brink; Jens Christian Refsgaard;doi: 10.3390/su10051634
handle: 11343/227486
Diffuse Water Pollution from Agriculture (DWPA) and its governance has received increased attention as a policy concern across the globe. Mitigation of DWPA is a complex problem that requires a mix of policy instruments and a multi-agency, broad societal response. In this paper, opportunities and barriers for developing co-governance, defined as collaborative societal involvement in the functions of government, and its suitability for mitigation of DWPA are reviewed using seven case studies in Europe (Poland, Denmark, Sweden, The Netherlands and UK), Australia (Murray-Darling Basin) and North America (State of Minnesota). An analytical framework for assessing opportunities and barriers of co-governance was developed and applied in this review. Results indicated that five key issues constitute both opportunities and barriers, and include: (i) pressure for change; (ii) connected governance structures and allocation of resources and funding; (iii) leadership and establishment of partnerships through capacity building; (iv) use and co-production of knowledge; and (v) time commitment to develop water co-governance.
Sustainability arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 80visibility views 80 download downloads 91 Powered bymore_vert Sustainability arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Saadabadi, S. Ali; Thallam Thattai, Aditya; Fan, Liyuan; Lindeboom, Ralph E.F.; Spanjers, Henri; Aravind, P.V.;Anaerobic Digestion (AD) is used worldwide for treating organic waste and wastewater. Biogas produced can be converted using conventional energy conversion devices to provide energy efficient, integrated waste solutions. Typically, the electrical conversion-efficiency of these devices is 30–40% and is lowered due to biogas utilization instead of high pure refined natural gas. The Solid Oxide Fuel Cell (SOFC) as an alternative device offers high (50–60%) electrical efficiency with low emissions (CO2, NOx) and high temperature residual heat. The high quality residual heat from SOFCs could be used to improve biogas production through thermal pre-treatment of the substrate for anaerobic digestion. This work discusses the advantages and challenges of integrated AD-SOFC systems against the most recent scientific and practical developments in the AD and SOFC domain. First, the biogas production process and its influence on the composition and level of contaminants in biogas are explained. Subsequently, the potential of various biogas cleaning techniques is discussed in order to remove contaminants that threaten stable and long-term SOFC operation. Since SOFCs utilize H2 and/or CO as fuel, possibilities for internal and external reforming are explained in detail. Special attention is given to biogas dry reforming in which CO2 naturally present in the biogas is utilized effectively in the reforming process. A detailed discussion on the choice of SOFC materials is presented, with a focus on biogas internal reforming. Various integrated SOFC system models with multiple configurations are also reviewed indicating the overall efficiencies. Some biogas SOFC pilot-plants are described and discussed to conclude with the techno-economic aspects of biogas SOFC systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018 NetherlandsPublisher:Elsevier BV Funded by:EC | AWESCO, EC | REACHEC| AWESCO ,EC| REACHPhilip Bechtle; Mark Schelbergen; Roland Schmehl; Udo Zillmann; Simon Watson;We compare the available wind resources for conventional wind turbines and for airborne wind energy systems. Accessing higher altitudes and dynamically adjusting the harvesting operation to the wind resource substantially increases the potential energy yield. The study is based on the ERA5 reanalysis data which covers a period of 7 years with hourly estimates at a surface resolution of 31 x 31 km and a vertical resolution of 137 barometric altitude levels. We present detailed wind statistics for a location in the English Channel and then expand the analysis to a surface grid of Western and Central Europe with a resolution of 110 x 110 km. Over the land mass and coastal areas of Europe we find that compared to a fixed harvesting altitude at the approximate hub height of wind turbines, the energy yield which is available for 95% of the time increases by a factor of two. 28 pages, 10 figures
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 449visibility views 449 download downloads 230 Powered bymore_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAbraham T. Gebremariam; Ali Vahidi; Francesco Di Maio; J. Moreno-Juez; I. Vegas-Ramiro; Artur Łagosz; Radosław Mróz; Peter Rem;This study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Funded by:EC | GREENSYNGASEC| GREENSYNGASHartmut Spliethoff; Wiebren de Jong; M. Mayerhofer; P. Mitsakis; Xiangmei Meng; Matthias Gaderer;Gasification is considered to be a promising way to use biomass with high efficiency in combined heatand power production, for the production of second generation biofuels and in the chemical industry.Especially allothermal fluidized bed steam gasification produces a medium calorific, nitrogen free gassuitable for a variety of downstream processes. In general the raw product gas has to be cleaned fromcondensable hydrocarbons (tar) and conditioned (e.g. adjustment of the H2/CO-ratio) before downstreamuse. The operating conditions of the gasification reactor have a large impact on the quality of the productgas. Hence first steps to a product gas low in tar content can be undertaken directly in the reactor. In thisstudy the capability of influencing the tar content and gas composition by changing temperature (750?840 C), steam to biomass (S/B) ratio (0.8?1.2) and pressure (0.1?0.25 MPa) in an allothermal bubblingfluidized bed steam gasifier is investigated. It is found that rising temperature reduces the total tar contentand affects especially heterocyclic and light aromatic compounds. At atmospheric pressure the naphthalenecontent increases slightly with increasing temperature in contrary to pressurized gasificationwhere naphthalene decreases significantly with increasing temperature. An increase in the S/B ratio leadsto a decreasing total tar content, this tar reduction according to a higher steam content is higher at highertemperatures. Increasing pressure leads to increasing total tar content mainly due to naphthalene, theeffect is most distinct for low S/B ratios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 103 citations 103 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Netherlands, GermanyPublisher:Elsevier BV Paul Fleuchaus; Simon Schüppler; Martin Bloemendal; Luca Guglielmetti; Oliver Opel; Philipp Blum;Abstract The storage of heat in aquifers, also referred to as Aquifer Thermal Energy Storage (ATES), bears a high potential to bridge the seasonal gap between periods of highest thermal energy demand and supply. With storage temperatures higher than 50 °C, High-Temperature (HT) ATES is capable to facilitate the integration of (non-)renewable heat sources into complex energy systems. While the complexity of ATES technology is positively correlated to the required storage temperature, HT-ATES faces multidisciplinary challenges and risks impeding a rapid market uptake worldwide. Therefore, the aim of this study is to provide an overview and analysis of these risks of HT-ATES to facilitate global technology adoption. Risk are identified considering experiences of past HT-ATES projects and analyzed by ATES and geothermal energy experts. An online survey among 38 international experts revealed that technical risks are expected to be less critical than legal, social and organizational risks. This is confirmed by the lessons learned from past HT-ATES projects, where high heat recovery values were achieved, and technical feasibility was demonstrated. Although HT-ATES is less flexible than competing technologies such as pits or buffer tanks, the main problems encountered are attributed to a loss of the heat source and fluctuating or decreasing heating demands. Considering that a HT-ATES system has a lifetime of more than 30 years, it is crucial to develop energy concepts which take into account the conditions both for heat sources and heat sinks. Finally, a site-specific risk analysis for HT-ATES in the city of Hamburg revealed that some risks strongly depend on local boundary conditions. A project-specific risk management is therefore indispensable and should be addressed in future research and project developments.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 135visibility views 135 download downloads 34 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: A.A. Tortosa Masiá; Bart J P Buhre; Terry Wall; Rajender Gupta;Deposits formation on heat transfer surfaces is one of the main problems associated to biomass co-combustion. It reduces plant efficiency and availability and increases maintenance costs. It is obvious that an increasing amount of low-temperature melting components in fuel ash accelerates and aggravates this process. Research is done to evaluate the validity of thermal analysis methods to characterise fusion of biomass and waste ashes. Laboratory ashes from a set of biomass and waste fuels are leached in successive steps. The original and the leached ashes are analysed by Thermo-Mechanical Analysis (TMA). Traces obtained from TMA show to be promising ash fingerprints to classify deposition tendencies. Additionally Simultaneous Thermal Analysis (STA) is performed on selected samples. Furthermore, improved chemical equilibrium calculations are proposed to predict the proportion of melted species resulting from combustion of biomass fuels. The model takes into account the reactivity of the inorganic matter in the fuel as issued from ash leaching.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 340 citations 340 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 NetherlandsPublisher:MDPI AG Christian Schnuelle; Kasper Kisjes; Torben Stuehrmann; Pablo Thier; Igor Nikolic; Arnim von Gleich; Stefan Goessling-Reisemann;doi: 10.3390/en13205522
The transition process towards renewable energy systems is facing challenges in both fluctuating electricity generation of photovoltaic and wind power as well as socio-economic disruptions. With regard to sector integration, solutions need to be developed, especially for the mobility and the industry sector, because their ad hoc electrification and decarbonization seem to be unfeasible. Power-to-fuel (P2F) technologies may contribute to bridge the gap, as renewable energy can be transferred into hydrogen and hydrocarbon-based synthetic fuels. However, the renewable fuels production is far from economically competitive with conventional fuels. With a newly developed agent-based model, potential developments in the German energy markets were simulated for a horizon of 20 years from 2016 to 2035. The model was constructed through a participatory modeling process with relevant actors and stakeholders in the field. Model findings suggest that adjusted regulatory framework conditions (e.g., exemptions from electricity surtaxes, accurate prices for CO2-certificates, strong start-up subsidies, and drastic emission reduction quotas) are key factors for economically feasible P2F installations and will contribute to its large-scale integration into the German energy system. While plant capacities do not exceed 0.042 GW in a business-as-usual scenarios, the above-mentioned adjustments lead to plant capacities of at least 3.25 GW in 2035 with concurrent reduction in product prices.
Energies arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 41visibility views 41 download downloads 31 Powered bymore_vert Energies arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 NetherlandsPublisher:MDPI AG Authors: Olindo, Roberta (author); Schmitt, Nathalie (author); Vogtländer, J.G. (author);doi: 10.3390/su13095250
LCAs of electric cars and electrolytic hydrogen production are governed by the consumption of electricity. Therefore, LCA benchmarking is prone to choices on electricity data. There are four issues: (1) leading Life Cycle Impact (LCI) databases suffer from inconvenient uncertainties and inaccuracies, (2) electricity mix in countries is rapidly changing, year after year, (3) the electricity mix is strongly fluctuating on an hourly and daily basis, which requires time-based allocation approaches, and (4) how to deal with nuclear power in benchmarking. This analysis shows that: (a) the differences of the GHG emissions of the country production mix in leading databases are rather high (30%), (b) in LCA, a distinction must be made between bundled and unbundled registered electricity certificates (RECs) and guarantees of origin (GOs); the residual mix should not be applied in LCA because of its huge inaccuracy, (c) time-based allocation rules for renewables are required to cope with periods of overproduction, (d) benchmarking of electricity is highly affected by the choice of midpoints and/or endpoint systems, and (e) there is an urgent need for a new LCI database, based on measured emission data, continuously kept up-to-date, transparent, and open access.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 69visibility views 69 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13095250&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Funded by:EC | BRISKEC| BRISKWiebren de Jong; Giacomo Spinelli; Manuela Di Marcello; Jaap H.A. Kiel; Jaap H.A. Kiel; Georgios Archimidis Tsalidis;Torrefaction is a promising biomass upgrading technology as it makes biomass more coal alike and offers benefits in logistics and handling operations. Gasification is an attractive thermochemical conversion technology due to its flexibility in the product gas end-uses. Therefore, it is valuable to investigate whether additional benefits are foreseen when torrefaction is coupled with gasification. Therefore, two commercial torrefied wood fuels and their parent materials are gasified at 800–850 °C under atmospheric steam-oxygen circulating fluidized bed gasification conditions and magnesite as bed material. The torrefied feedstocks consisted of wood residues torrefied by Topell at 250 °C (Topell black), and mixed wood and wood residues torrefied by Torrcoal at 300 °C (Torrcoal black). The gasification results show that torrefaction resulted in an increased gas quality, as it yielded higher H2 and CO contents, a decrease of the CO2 content, increased gas yield and a significant decrease of the total tar content for both feedstocks. For the Torrcoal samples, torrefaction resulted in a decrease in the carbon conversion efficiency (CCE). In addition, the cold gas efficiency (CGE) remained approximately the same due to the increase in the H2 and CO contents. The Topell samples showed an increase in the CCE and CGE upon torrefaction, but this could be attributed to a significant grinding in the screw feeder. It is generally concluded that both torrefied fuels may offer benefits as a feedstock for steam-oxygen blown circulating fluidized bed gasification, in particular in terms of gas quality and yield.
Biomass and Bioenerg... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 53visibility views 53 download downloads 117 Powered bymore_vert Biomass and Bioenerg... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2017Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, Australia, NetherlandsPublisher:MDPI AG Funded by:EC | FAirWAYEC| FAirWAYMorten Graversgaard; Beatrice Hedelin; Laurence Smith; Flemming Gertz; Anker Lajer Højberg; John Langford; Grit Martinez; Erik Mostert; Emilia Ptak; Heidi Peterson; Nico Stelljes; Cors Van den Brink; Jens Christian Refsgaard;doi: 10.3390/su10051634
handle: 11343/227486
Diffuse Water Pollution from Agriculture (DWPA) and its governance has received increased attention as a policy concern across the globe. Mitigation of DWPA is a complex problem that requires a mix of policy instruments and a multi-agency, broad societal response. In this paper, opportunities and barriers for developing co-governance, defined as collaborative societal involvement in the functions of government, and its suitability for mitigation of DWPA are reviewed using seven case studies in Europe (Poland, Denmark, Sweden, The Netherlands and UK), Australia (Murray-Darling Basin) and North America (State of Minnesota). An analytical framework for assessing opportunities and barriers of co-governance was developed and applied in this review. Results indicated that five key issues constitute both opportunities and barriers, and include: (i) pressure for change; (ii) connected governance structures and allocation of resources and funding; (iii) leadership and establishment of partnerships through capacity building; (iv) use and co-production of knowledge; and (v) time commitment to develop water co-governance.
Sustainability arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 80visibility views 80 download downloads 91 Powered bymore_vert Sustainability arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10051634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Saadabadi, S. Ali; Thallam Thattai, Aditya; Fan, Liyuan; Lindeboom, Ralph E.F.; Spanjers, Henri; Aravind, P.V.;Anaerobic Digestion (AD) is used worldwide for treating organic waste and wastewater. Biogas produced can be converted using conventional energy conversion devices to provide energy efficient, integrated waste solutions. Typically, the electrical conversion-efficiency of these devices is 30–40% and is lowered due to biogas utilization instead of high pure refined natural gas. The Solid Oxide Fuel Cell (SOFC) as an alternative device offers high (50–60%) electrical efficiency with low emissions (CO2, NOx) and high temperature residual heat. The high quality residual heat from SOFCs could be used to improve biogas production through thermal pre-treatment of the substrate for anaerobic digestion. This work discusses the advantages and challenges of integrated AD-SOFC systems against the most recent scientific and practical developments in the AD and SOFC domain. First, the biogas production process and its influence on the composition and level of contaminants in biogas are explained. Subsequently, the potential of various biogas cleaning techniques is discussed in order to remove contaminants that threaten stable and long-term SOFC operation. Since SOFCs utilize H2 and/or CO as fuel, possibilities for internal and external reforming are explained in detail. Special attention is given to biogas dry reforming in which CO2 naturally present in the biogas is utilized effectively in the reforming process. A detailed discussion on the choice of SOFC materials is presented, with a focus on biogas internal reforming. Various integrated SOFC system models with multiple configurations are also reviewed indicating the overall efficiencies. Some biogas SOFC pilot-plants are described and discussed to conclude with the techno-economic aspects of biogas SOFC systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 160 citations 160 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2018 NetherlandsPublisher:Elsevier BV Funded by:EC | AWESCO, EC | REACHEC| AWESCO ,EC| REACHPhilip Bechtle; Mark Schelbergen; Roland Schmehl; Udo Zillmann; Simon Watson;We compare the available wind resources for conventional wind turbines and for airborne wind energy systems. Accessing higher altitudes and dynamically adjusting the harvesting operation to the wind resource substantially increases the potential energy yield. The study is based on the ERA5 reanalysis data which covers a period of 7 years with hourly estimates at a surface resolution of 31 x 31 km and a vertical resolution of 137 barometric altitude levels. We present detailed wind statistics for a location in the English Channel and then expand the analysis to a surface grid of Western and Central Europe with a resolution of 110 x 110 km. Over the land mass and coastal areas of Europe we find that compared to a fixed harvesting altitude at the approximate hub height of wind turbines, the energy yield which is available for 95% of the time increases by a factor of two. 28 pages, 10 figures
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 449visibility views 449 download downloads 230 Powered bymore_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: DataciteDelft University of Technology: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu