- home
- Advanced Search
- Energy Research
- 15. Life on land
- AU
- DE
- Energy Research
- 15. Life on land
- AU
- DE
Research data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CSIRO.ACCESS-ESM1-5.esm-hist' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Dix, Martin; Bi, Daohua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia M.; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CSIRO-ARCCSS.ACCESS-CM2.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Climate Model Version 2 climate model, released in 2019, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean). The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 May 2022Publisher:Dryad Authors: Castañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; +2 AuthorsCastañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; Woinarski, John C. Z.; Newsome, Thomas M.;Understanding variation in the diet of widely distributed species can help us to predict how they respond to future environmental and anthropogenic changes. We studied the diet of the red fox Vulpes vulpes, one of the world’s most widely distributed carnivores. We compiled dietary data from 217 studies at 276 locations in five continents to assess how fox diet composition varied according to geographic location, climate, anthropogenic impact and sampling method. The diet of foxes showed substantial variation throughout the species’ range, but with a general trend for small mammals and invertebrates to be the most frequently occurring dietary items. The incidence of small and large mammals and birds in fox diets was greater away from the equator. The incidence of invertebrates and fruits increased with mean elevation, while the occurrence of medium-sized mammals and birds decreased. Fox diet differed according to climatic and anthropogenic variables. Diet richness decreased with increasing temperature and precipitation. The incidence of small and large mammals decreased with increasing temperature. The incidence of birds and invertebrates decreased with increasing mean annual precipitation. Higher Human Footprint Index was associated with lower incidence of large mammals and higher incidence of birds and fruit in fox diet. Sampling method influenced fox diet estimation: estimated percentage of small and medium-sized mammals and fruit was lower in studies based on stomach contents, while large mammals were more likely to be recorded in studies of stomach contents than in studies of scats. Our study confirms the flexible and opportunistic dietary behaviour of foxes at the global scale. This behavioural trait allows them to thrive in a range of climatic conditions, and in areas with different degrees of human-induced habitat change. This knowledge can help place the results of local-scale fox diet studies into a broader context and to predict how foxes will respond to future environmental changes. Castañeda et al. 2022 Mammal Review (Variation in red fox Vulpes vulpes diet in five continents)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Sep 2023Publisher:Dryad Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; Juggins, Stephen; Crosta, Xavier; Weckström, Kaarina;A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity. # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:EnviDat Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael;doi: 10.16904/envidat.228
High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled temperature and precipitation to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. CHELSA data published in EnviDat includes the deprecated version 1.2 (originally published under 10.5061/dryad.kd1d4). Please use the current 2.1 version. Paper Citation: - _Karger DN. et al. Climatologies at high resolution for the earth’s land surface areas, Scientific Data, 4, 170122 (2017) [doi: 10.1038/sdata.2017.122](https://doi.org/10.1038/sdata.2017.122)._
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 23 Jun 2020Publisher:CRC/TR32 Database (TR32DB) Reichenau, Tim G.; Korres, Wolfgang; Schmidt, Marius; Graf, Alexander; Welp, Gerd; Meyer, Nele; Stadler, Anja; Brogi, Cosimo; Schneider, Karl;doi: 10.5880/tr32db.39
A collection of field data from four agricultural sites in the Rur catchment in Western Germany collected in the frame of the Transregional Collaborative Research Centre 32 “Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation” (TR32). The dataset includes data on vegetation (states and fluxes), weather, soil, and agricultural management. Vegetation-related data comprises fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content, and carbon-, energy- and water-fluxes for a variety of agricultural plants. In addition, masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop are included. Data on agricultural management includes sowing and harvest dates, and information on cultivation, fertilization and agrochemicals. The dataset also includes gap-filled weather data and soil parameters (particle size distributions, carbon and nitrogen contents). This data can be useful for development and validation of remote sensing products. A detailed description of the dataset can be found in Reichenau et al. (2020).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 01 Aug 2018Publisher:Dryad Nurmi, Niina O.; Hohmann, Gottfried; Goldstone, Lucas G.; Deschner, Tobias; Schülke, Oliver;Humans share an extraordinary degree of sociality with other primates, calling for comparative work into the evolutionary drivers of the variation in social engagement observed between species. Of particular interest is the contrast between the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), the latter exhibiting increased female gregariousness, more tolerant relationships, and elaborate behavioral adaptations for conflict resolution. Here we test predictions from three socio-ecological hypotheses regarding the evolution of these traits using data on wild bonobos at LuiKotale, Democratic Republic of Congo. Focusing on the behavior of co-feeding females and controlling for variation in characteristics of the feeding patch, food intake rate moderately increased while feeding effort decreased with female dominance rank, indicating that females engaged in competitive exclusion from high quality food resources. However, these rank effects did not translate into variation in energy balance, as measured from urinary C-peptide levels. Instead, energy balance varied independent of female rank with the proportion of fruit in the diet. Together with the observation that females join forces in conflicts with males, our results support the hypothesis that predicts that females trade off feeding opportunities for safety against male aggression. The key to a full understanding of variation in social structure may be an integrated view of cooperation and competition over access to the key resources food and mates, both within and between the sexes. main_pan_analysis_II_intake_poisson_script_07022017R script for analysing food intake using a GLMMMASTER_analyses_II_R_file_intake_fFile containing the variables for the GLMM on food intake, analysed in RMAIN_pan_analysis_III_movement_script_26092016R script for analysing movement probability in focal trees using GLMMMASTER_analyses_III_R_file_movement_fFile containing the variables to analyse movement probability with a GLMM in Rmain_ucp_model_script_21022018_seasonality_update_with_feedscansR script to analyse variation in urinary C-peptide in a LMMmain_ucp_model_data_r_2018_seasonality_update_with_feed_scansFile containing the variables to analyse variation in urinary C-peptide using an LMM in R
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Hutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; +18 AuthorsHutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; de Boer, Agatha M.; Baatsen, Michiel; von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Sliwinska, Kasia K.; Wilson, Paul A.; Zhang, Zongshi;This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.1
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Ziehn, Tilo; Chamberlain, Matthew; Lenton, Andrew; Law, Rachel; Bodman, Roger; Dix, Martin; Wang, Yingping; Dobrohotoff, Peter; Srbinovsky, Jhan; Stevens, Lauren; Vohralik, Peter; Mackallah, Chloe; Sullivan, Arnold; O'Farrell, Siobhan; Druken, Kelsey;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CSIRO.ACCESS-ESM1-5.esm-hist' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 climate model, released in 2019, includes the following components: aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean). The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcsaeeh&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Dix, Martin; Bi, Daohua; Dobrohotoff, Peter; Fiedler, Russell; Harman, Ian; Law, Rachel; Mackallah, Chloe; Marsland, Simon; O'Farrell, Siobhan; Rashid, Harun; Srbinovsky, Jhan; Sullivan, Arnold; Trenham, Claire; Vohralik, Peter; Watterson, Ian; Williams, Gareth; Woodhouse, Matthew; Bodman, Roger; Dias, Fabio Boeira; Domingues, Catia M.; Hannah, Nicholas; Heerdegen, Aidan; Savita, Abhishek; Wales, Scott; Allen, Chris; Druken, Kelsey; Evans, Ben; Richards, Clare; Ridzwan, Syazwan Mohamed; Roberts, Dale; Smillie, Jon; Snow, Kate; Ward, Marshall; Yang, Rui;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CSIRO-ARCCSS.ACCESS-CM2.ssp245' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The Australian Community Climate and Earth System Simulator Climate Model Version 2 climate model, released in 2019, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean). The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcsiaccs245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 06 May 2022Publisher:Dryad Authors: Castañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; +2 AuthorsCastañeda, Irene; Doherty, Tim S.; Fleming, Patricia A.; Stobo-Wilson, Alyson M.; Woinarski, John C. Z.; Newsome, Thomas M.;Understanding variation in the diet of widely distributed species can help us to predict how they respond to future environmental and anthropogenic changes. We studied the diet of the red fox Vulpes vulpes, one of the world’s most widely distributed carnivores. We compiled dietary data from 217 studies at 276 locations in five continents to assess how fox diet composition varied according to geographic location, climate, anthropogenic impact and sampling method. The diet of foxes showed substantial variation throughout the species’ range, but with a general trend for small mammals and invertebrates to be the most frequently occurring dietary items. The incidence of small and large mammals and birds in fox diets was greater away from the equator. The incidence of invertebrates and fruits increased with mean elevation, while the occurrence of medium-sized mammals and birds decreased. Fox diet differed according to climatic and anthropogenic variables. Diet richness decreased with increasing temperature and precipitation. The incidence of small and large mammals decreased with increasing temperature. The incidence of birds and invertebrates decreased with increasing mean annual precipitation. Higher Human Footprint Index was associated with lower incidence of large mammals and higher incidence of birds and fruit in fox diet. Sampling method influenced fox diet estimation: estimated percentage of small and medium-sized mammals and fruit was lower in studies based on stomach contents, while large mammals were more likely to be recorded in studies of stomach contents than in studies of scats. Our study confirms the flexible and opportunistic dietary behaviour of foxes at the global scale. This behavioural trait allows them to thrive in a range of climatic conditions, and in areas with different degrees of human-induced habitat change. This knowledge can help place the results of local-scale fox diet studies into a broader context and to predict how foxes will respond to future environmental changes. Castañeda et al. 2022 Mammal Review (Variation in red fox Vulpes vulpes diet in five continents)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb2h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Sep 2023Publisher:Dryad Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; Juggins, Stephen; Crosta, Xavier; Weckström, Kaarina;A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity. # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:EnviDat Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E.; Linder, H. Peter; Kessler, Michael;doi: 10.16904/envidat.228
High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. Here we present the CHELSA (Climatologies at high resolution for the earth’s land surface areas) data of downscaled temperature and precipitation to a high resolution of 30 arc sec. The temperature algorithm is based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. CHELSA data published in EnviDat includes the deprecated version 1.2 (originally published under 10.5061/dryad.kd1d4). Please use the current 2.1 version. Paper Citation: - _Karger DN. et al. Climatologies at high resolution for the earth’s land surface areas, Scientific Data, 4, 170122 (2017) [doi: 10.1038/sdata.2017.122](https://doi.org/10.1038/sdata.2017.122)._
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.16904/envidat.228&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 23 Jun 2020Publisher:CRC/TR32 Database (TR32DB) Reichenau, Tim G.; Korres, Wolfgang; Schmidt, Marius; Graf, Alexander; Welp, Gerd; Meyer, Nele; Stadler, Anja; Brogi, Cosimo; Schneider, Karl;doi: 10.5880/tr32db.39
A collection of field data from four agricultural sites in the Rur catchment in Western Germany collected in the frame of the Transregional Collaborative Research Centre 32 “Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation” (TR32). The dataset includes data on vegetation (states and fluxes), weather, soil, and agricultural management. Vegetation-related data comprises fresh and dry biomass (green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological development state, nitrogen and carbon content, and carbon-, energy- and water-fluxes for a variety of agricultural plants. In addition, masses of harvest residues and regrowth of vegetation after harvest or before planting of the main crop are included. Data on agricultural management includes sowing and harvest dates, and information on cultivation, fertilization and agrochemicals. The dataset also includes gap-filled weather data and soil parameters (particle size distributions, carbon and nitrogen contents). This data can be useful for development and validation of remote sensing products. A detailed description of the dataset can be found in Reichenau et al. (2020).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/tr32db.39&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Embargo end date: 01 Aug 2018Publisher:Dryad Nurmi, Niina O.; Hohmann, Gottfried; Goldstone, Lucas G.; Deschner, Tobias; Schülke, Oliver;Humans share an extraordinary degree of sociality with other primates, calling for comparative work into the evolutionary drivers of the variation in social engagement observed between species. Of particular interest is the contrast between the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), the latter exhibiting increased female gregariousness, more tolerant relationships, and elaborate behavioral adaptations for conflict resolution. Here we test predictions from three socio-ecological hypotheses regarding the evolution of these traits using data on wild bonobos at LuiKotale, Democratic Republic of Congo. Focusing on the behavior of co-feeding females and controlling for variation in characteristics of the feeding patch, food intake rate moderately increased while feeding effort decreased with female dominance rank, indicating that females engaged in competitive exclusion from high quality food resources. However, these rank effects did not translate into variation in energy balance, as measured from urinary C-peptide levels. Instead, energy balance varied independent of female rank with the proportion of fruit in the diet. Together with the observation that females join forces in conflicts with males, our results support the hypothesis that predicts that females trade off feeding opportunities for safety against male aggression. The key to a full understanding of variation in social structure may be an integrated view of cooperation and competition over access to the key resources food and mates, both within and between the sexes. main_pan_analysis_II_intake_poisson_script_07022017R script for analysing food intake using a GLMMMASTER_analyses_II_R_file_intake_fFile containing the variables for the GLMM on food intake, analysed in RMAIN_pan_analysis_III_movement_script_26092016R script for analysing movement probability in focal trees using GLMMMASTER_analyses_III_R_file_movement_fFile containing the variables to analyse movement probability with a GLMM in Rmain_ucp_model_script_21022018_seasonality_update_with_feedscansR script to analyse variation in urinary C-peptide in a LMMmain_ucp_model_data_r_2018_seasonality_update_with_feed_scansFile containing the variables to analyse variation in urinary C-peptide using an LMM in R
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 7visibility views 7 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.4c1246q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Mehta, Piyush; Siebert, Stefan; Kummu, Matti; Deng, Qinyu; Ali, Tariq; Marston, Landon; Xie, Wei; Davis, Kyle;The expansion of irrigated agriculture has increased global crop production but resulted in widespread stress to freshwater resources. Ensuring that increases in irrigated production only occur in places where water is relatively abundant is a key objective of sustainable agriculture, and knowledge of how irrigated land has evolved is important for measuring progress towards water sustainability. Yet a spatially detailed understanding of the evolution of global area equipped for irrigation (AEI) is missing. Here we utilize the latest sub-national irrigation statistics (covering 17298 administrative units) from various official sources to develop a gridded (5 arc-min resolution) global product of AEI for the years 2000, 2005, 2010, and 2015. We find that AEI increased by 11% from 2000 (297 Mha) to 2015 (330 Mha) with locations of both substantial expansion (e.g., northwest India, northeast China) and decline (e.g., Russia). Combining these outputs with information on green (i.e., rainfall) and blue (i.e., surface and ground) water stress, we also examine to what extent irrigation has expanded unsustainably (i.e., in places already experiencing water stress). We find that more than half (52%) of irrigation expansion has taken place in regions that were already water stressed, with India alone accounting for 36% of global unsustainable expansion. These findings provide new insights into the evolving patterns of global irrigation with important implications for global water sustainability and food security. Recommended citation: Mehta, P., Siebert, S., Kummu, M. et al. Half of twenty-first century global irrigation expansion has been in water-stressed regions. Nat Water (2024). https://doi.org/10.1038/s44221-024-00206-9 Open-access peer reviewed publication available at https://www.nature.com/articles/s44221-024-00206-9 Files G_AEI_*.ASC were produced using the GMIA dataset[https://data.apps.fao.org/catalog/iso/f79213a0-88fd-11da-a88f-000d939bc5d8]. Files MEIER_G_AEI_*.ASC were produced using Meier et al. (2018) dataset [https://doi.pangaea.de/10.1594/PANGAEA.884744].
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2Kvisibility views 1,826 download downloads 1,165 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6740334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Hutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; +18 AuthorsHutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; de Boer, Agatha M.; Baatsen, Michiel; von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Sliwinska, Kasia K.; Wilson, Paul A.; Zhang, Zongshi;This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.1
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu