- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- Open Source
- 7. Clean energy
- 1. No poverty
- AU
- EU
- Energy Research
- Open Access
- Closed Access
- Restricted
- Open Source
- 7. Clean energy
- 1. No poverty
- AU
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:Elsevier BV Authors:Chaudry, S.;
Chaudry, S.
Chaudry, S. in OpenAIREBahri, P.A.;
Bahri, P.A.
Bahri, P.A. in OpenAIREMoheimani, N.R.;
Moheimani, N.R.
Moheimani, N.R. in OpenAIREMicroalgae have tremendous potential for producing liquid renewable fuel. Many methods for converting microalgae to biofuel have been proposed; however, an economical and energetically feasible route for algal fuel production is yet to be found. This paper presents a review on the comparison of the most promising conversion pathways of microalgae to liquid fuel: hydrothermal liquefaction (HTL), wet extraction and non-destructive extraction. The comparison is based on important assessment parameters of product quality and yield, nutrient recovery, GHG emissions, energy and the cost associated with the production of fuel from microalgae, in order to better understand the pros and cons of each method. It was found that the HTL pathway produces more oil than the wet extraction pathway; however, higher concentrations of unwanted components are present in the HTL oil produced. Less nutrients (N and P) can be recovered in HTL compared to wet extraction. HTL consumes more fossil energy and generates higher GHG emissions than wet extraction, while the production cost of fuel from HTL pathway is lower than wet extraction pathway. There is considerable uncertainty in the comparison of the energy consumption and economics of the HTL pathway and the wet extraction pathway due to different scenarios analysed in the assessment studies. To be able to appropriately compare methodologies, the conversion methods should be analysed from growth to upgradation of oil utilising sufficiently similar assumptions and scenarios. Based on the data in available literature, wet oil extraction is the more appropriate system for biofuel production than HTL. However, the potential of alternative extraction/conversion technologies, such as, non-destructive extraction, need to be further assessed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.08.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes;Serina Ahlgren;
Pål Börjesson;Serina Ahlgren
Serina Ahlgren in OpenAIREAnnette L. Cowie;
Annette L. Cowie
Annette L. Cowie in OpenAIREdoi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 China (People's Republic of), Hong Kong, China (People's Republic of)Publisher:Elsevier BV Ren, S; Luo, F; Lin, L; Hsu, SC; Li, XI;handle: 10397/101128
Abstract With promising benefits such as traffic emission reduction, traffic congestion alleviation, and parking problem solving, Electric Vehicle (EV)-sharing systems have attracted large attentions in recent years. Different from other business modes, customers in sharing economy systems are usually price sensitive. Therefore, it is possible to shift the usage of shared EVs through a well-designed Dynamic Pricing Scheme (DPS), with the objective of maximizing the system operator's total profit. In this study, we propose a novel DPS for a large-scale EV-sharing network to address the EV unbalancing issue and satisfy the vehicle-grid-integration (VGI) service based on accurate station-level demand prediction. The proposed DPS is formulated as a complex optimization problem, which includes two Price Adjustment Level (PAL) decision variables for every origin-destination pair of stations. The two PALs are employed to affect the EV-sharing demand and travel time between each station pair, respectively. Physical and operational constraints from both EV demand and VGI service aspects are also included in the proposed model. Two case study are conducted to validate the effectiveness of the proposed method.
Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/101128Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Production EconomicsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijpe.2019.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hong Kong Polytechni... arrow_drop_down Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)Article . 2023License: CC BY NC NDFull-Text: http://hdl.handle.net/10397/101128Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Production EconomicsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijpe.2019.06.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Funded by:EC | VULKANOEC| VULKANOAuthors:Royo, Patricia;
Royo, Patricia
Royo, Patricia in OpenAIREAcevedo, Luis;
Acevedo, Luis
Acevedo, Luis in OpenAIREFerreira, Victor J.;
García-Armingol, Tatiana; +2 AuthorsFerreira, Victor J.
Ferreira, Victor J. in OpenAIRERoyo, Patricia;
Royo, Patricia
Royo, Patricia in OpenAIREAcevedo, Luis;
Acevedo, Luis
Acevedo, Luis in OpenAIREFerreira, Victor J.;
García-Armingol, Tatiana;Ferreira, Victor J.
Ferreira, Victor J. in OpenAIRELópez-Sabirón, Ana M.;
López-Sabirón, Ana M.
López-Sabirón, Ana M. in OpenAIREFerreira, Germán;
Ferreira, Germán
Ferreira, Germán in OpenAIREThe energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Digital Repository o... arrow_drop_down Digital Repository of University of Zaragoza (ZAGUAN)Article . 2019License: CC BY NC NDFull-Text: http://zaguan.unizar.es/record/87807Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADigital Repository of University of ZaragozaArticle . 2020License: CC BY NC NDData sources: Digital Repository of University of Zaragozaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.02.118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint , Report 2000 AustraliaPublisher:Unknown Authors: Tisdell, Clement A.; Tisdell, Clement A.;Points out that sustainability as such does not provide a clearcut guide to policy. First one has to decide what is to be sustained. If this is agreed, it must be in an operational from. However, difficulties may still emerge since opinions may differ about how to achieve. This is illustrated by differences in the views of economists about how sustainable development is to be achieved. Orthodox economists stress the importance of the accumulation of man-made capital to achieve this end whereas neo-Malthusians stress the importance of conserving natural resource and environmental capital. Both take an anthropocentric point of view. For political reasons the neo-Malthusian has had little support but it may eventually turn out to be correct. Economics is concerned with reducing economic scarcity and economists have traditionally suggested four main ways of doing this of which economic growth is one. However, neo-Malthusian economists believe that this may not be a sustainable strategy – it may result in future poverty. It should be noted that economic systems are embedded in social and natural systems and depend on these. Economic sustainability depends on the sustainability of these other systems. So from this point of view, it is just one of several bottom lines. Values must be considered in relation to sustainability. Economics is completely anthropocentric in its approach. Therefore, economic approaches to conservation and sustainability can be at odds with the values of deep ecologists or those willing to accord rights to other sentient beings or ecosystems independent of human wishes, or those who want to make use of value judgments other than those based on the measuring rod of money. Consequently economics evaluation is sometimes ineffective in resolving social conflict, including conflict about what should be sustained. As a rule economics alone should not be the final arbiter of social decisions. It is a part (often an important part) of the social evaluation process but not the bottom line, or just one of many lines.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.48004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.48004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | MefCO2EC| MefCO2Authors:Bellotti, D.;
Bellotti, D.
Bellotti, D. in OpenAIRERivarolo, M.;
Rivarolo, M.
Rivarolo, M. in OpenAIREMagistri, L.;
Magistri, L.
Magistri, L. in OpenAIREMassardo, A. F.;
Massardo, A. F.
Massardo, A. F. in OpenAIREhandle: 11567/893436
Abstract This paper aims to present a feasibility study of the innovative plant for methanol synthesis from carbon dioxide-sequestered by fossil fuel power plant and hydrogen, which is produced by water electrolyzer employing the over-production on the electrical grid. The thermo-economic analysis is performed in the framework of the MefCO2 H2020 EU project and it is referred to the German economic scenario, properly taking into account the real market costs and cost functions for different components of the plant. Three different plant capacities for methanol production (4000 10,000 and 50,000 ton/year) have been investigated, assuming an average cost for electrical energy to feed electrolysers and analyzing the influence of the most significant parameters (oxygen selling option, methanol selling price and electrolysers’ capital cost) on the profitability of the plant. The analysis has been performed in W-ECoMP, software for the thermo-economic analysis and plant optimization developed by the University of Genoa.
Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of CO2 Utili... arrow_drop_down Journal of CO2 UtilizationArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jcou.2017.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Elsevier BV Funded by:EC | ICOMFLUID, UKRI | Development of fast pyrol...EC| ICOMFLUID ,UKRI| Development of fast pyrolysis based advanced biofuel technologies for biofuelsAuthors:Beatriz Fidalgo;
Sai Gu; Mobolaji Shemfe; Mobolaji Shemfe;Beatriz Fidalgo
Beatriz Fidalgo in OpenAIREBiofuels have been identified as a mid-term GHG emission abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in partial and complete combustion modes (P-2RG) and (ii) a single stage regenerator operating in complete combustion mode coupled with a catalyst cooler (P-1RGC). The designs were implemented in Aspen Plus® based on a hypothetical 72 t/day pine wood fast pyrolysis and zeolite cracking plant and compared in terms of energy efficiency and profitability. The energy efficiencies of P-2RG and P-1RGC were estimated at 54% and 52%, respectively with corresponding minimum fuel selling prices (MFSPs) of £7.48/GGE and £7.20/GGE. Sensitivity analysis revealed that the MFSPs of both designs are mainly sensitive to variations in fuel yield, operating cost and income tax. Furthermore, uncertainty analysis indicated that the likely range of the MFSPs of P-1RGC (£5.81/GGE £11.63/GGE) at 95% probability was more economically favourable compared with P-2RG, along with a penalty of 2% reduction in energy efficiency. The results provide evidence to support the economic viability of biofuel production via zeolite cracking of pyrolysis-derived bio-oil.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2017License: CC BYFull-Text: http://epubs.surrey.ac.uk/813454/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingAuthors:Minasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.; +30 AuthorsMcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREMinasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.;Mcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREArrouays, Dominique;
Chambers, Adam;Arrouays, Dominique
Arrouays, Dominique in OpenAIREChaplot, Vincent;
Chen, Zueng-Sang;Chaplot, Vincent
Chaplot, Vincent in OpenAIRECheng, Kun;
Cheng, Kun
Cheng, Kun in OpenAIREDas, Bhabani S.;
Das, Bhabani S.
Das, Bhabani S. in OpenAIREField, Damien J.;
Gimona, Alessandro;Field, Damien J.
Field, Damien J. in OpenAIREHedley, Carolyn B.;
Hong, Suk Young; Mandal, Biswapati;Hedley, Carolyn B.
Hedley, Carolyn B. in OpenAIREMarchant, Ben P.;
Marchant, Ben P.
Marchant, Ben P. in OpenAIREMartin, Manuel;
Mcconkey, Brian G.;Martin, Manuel
Martin, Manuel in OpenAIREMulder, Vera Leatitia;
Mulder, Vera Leatitia
Mulder, Vera Leatitia in OpenAIREO'Rourke, Sharon;
O'Rourke, Sharon
O'Rourke, Sharon in OpenAIRERicher-De-Forges, Anne C;
Odeh, Inakwu;Richer-De-Forges, Anne C
Richer-De-Forges, Anne C in OpenAIREPadarian, José;
Paustian, Keith; Pan, Genxing;Padarian, José
Padarian, José in OpenAIREPoggio, Laura;
Poggio, Laura
Poggio, Laura in OpenAIRESavin, Igor;
Stolbovoy, Vladimir;Savin, Igor
Savin, Igor in OpenAIREStockmann, Uta;
Stockmann, Uta
Stockmann, Uta in OpenAIRESulaeman, Yiyi;
Tsui, Chun-Chih;Sulaeman, Yiyi
Sulaeman, Yiyi in OpenAIREVågen, Tor-Gunnar;
Vågen, Tor-Gunnar
Vågen, Tor-Gunnar in OpenAIREvan Wesemael, Bas;
Winowiecki, Leigh;van Wesemael, Bas
van Wesemael, Bas in OpenAIREThe ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Sweden, BelgiumPublisher:The Electrochemical Society Funded by:RCN | The Norwegian Centre for ..., EC | Hydra, RCN | Norwegian Micro- and Nano...RCN| The Norwegian Centre for Transmission Electron Microscopy - NORTEM ,EC| Hydra ,RCN| Norwegian Micro- and Nanofabrication Facility IIAuthors: Xuelian Liu; Marion Maffre;Da Tie;
Nils Peter Wagner;
+12 AuthorsNils Peter Wagner
Nils Peter Wagner in OpenAIREXuelian Liu; Marion Maffre;Da Tie;
Nils Peter Wagner;
Noelia Cortés Félix;Nils Peter Wagner
Nils Peter Wagner in OpenAIRERaheleh Azmi;
Raheleh Azmi
Raheleh Azmi in OpenAIREKillian Stokes;
Killian Stokes
Killian Stokes in OpenAIREPer Erik Vullum;
Jérome Bailly;Per Erik Vullum
Per Erik Vullum in OpenAIREShubhadeep Pal;
Gary Evans;Shubhadeep Pal
Shubhadeep Pal in OpenAIREMihaela Buga;
Mihaela Buga
Mihaela Buga in OpenAIREMaria Hahlin;
Maria Hahlin
Maria Hahlin in OpenAIREKristina Edström;
Kristina Edström
Kristina Edström in OpenAIRESimon Clark;
Simon Clark
Simon Clark in OpenAIREAlexandru Vlad;
Alexandru Vlad
Alexandru Vlad in OpenAIREhandle: 2078.1/281630
Spinel LiNi0.5Mn1.5O4 as one of the high-energy positive electrode materials for next generation Li-ion batteries has attracted significant interest due to its economic and environmental advantages. However, the sensitivity of this type of material upon short to long term ambient storage conditions and the impact on the electrochemical performances remains poorly explored. Nevertheless, this remains an important aspect for practical large-scale synthesis, storage and utilization. Herein, we study and compare the evolution of surface chemistry, bulk crystal structure and elemental content evolution and distribution of LiNi0.5Mn1.5O4 using a variety of characterization techniques including XPS and STEM-EDS-EELS, as well as electrochemical analysis. We show that Mn species dominate the outer surface (0–5 nm), while Ni and Li are preferentially located further away and in the bulk. The studied LiNi0.5Mn1.5O4 material is found to be stable, with minor changes in surface or bulk characteristics detected, even after 12 months of storage under ambient air conditions. The low surface reactivity to air also accounts for the minor changes to the electrochemical performance of the air-exposed LiNi0.5Mn1.5O4, compared to the pristine material. This study provides guidance for the appropriate storage, handling and processing of this high-performance cathode material.
Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of The Elect... arrow_drop_down Journal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationer från Uppsala UniversitetArticle . 2023 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2023 . Peer-reviewedJournal of The Electrochemical SocietyArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/1945-7111/ad0263&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Project deliverable 2017Publisher:Zenodo Funded by:EC | EoCoEEC| EoCoEAuthors: Deutsch, T.;Optimization of all numerical codes ported in the infrastructure and used for supercapacitors, PV and batteries. The scope of deliverable D3.2 is to report the new advances in the field of materials for energy that comes from the search of new methodologies and models that could be more efficient on the new generation of computer hardware for exascale. In this respect, deliverable D3.2 is a transversal deliverable that report the new advances related to activities described in task T3.2, T3.3 and T3.4. H2020
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1286897&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu