- home
- Advanced Search
- Energy Research
- 15. Life on land
- 3. Good health
- AU
- FR
- Energy Research
- 15. Life on land
- 3. Good health
- AU
- FR
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Sep 2023Publisher:Dryad Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; Juggins, Stephen; Crosta, Xavier; Weckström, Kaarina;A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity. # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.IPSL.IPSL-CM6A-LR.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IPSL-CM6A-LR climate model, released in 2017, includes the following components: atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3. The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmipiclpc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmipiclpc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Voldoire, Aurore;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.HighResMIP.CNRM-CERFACS.CNRM-CM6-1-HR.hist-1950' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2h1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2h1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Hutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; +18 AuthorsHutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; de Boer, Agatha M.; Baatsen, Michiel; von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Sliwinska, Kasia K.; Wilson, Paul A.; Zhang, Zongshi;This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.1
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2013 France, France, India, AustraliaPublisher:Springer Netherlands Heath, L.; Salinger, M. J.; Falkland, T.; Hansen, J.; Jiang, K.; Kameyama, Y.; Kishi, M.; Lebel, L.; Meinke, H.; Morton, K.; Nikitina, E.; Shukla, P. R.; White, I.;handle: 10568/68148 , 1885/26609 , 11718/13190
The impacts of increasing natural climate disasters are threatening food security in the Asia-Pacific region. Rice is Asia’s most important staple food. Climate variability and change directly impact rice production, through changes in rainfall, temperature and CO2 concentrations. The key for sustainable rice crop is water management. Adaptation can occur through shifts of cropping to higher latitudes and can profit from river systems (via irrigation) so far not considered. New opportunities arise to produce more than one crop per year in cooler areas. Asian wheat production in 2005 represents about 43 % of the global total. Changes in agronomic practices, such as earlier plant dates and cultivar substitution will be required. Fisheries play a crucial role in providing food security with the contribution of fish to dietary animal protein being very high in the region – up to 90 % in small island developing states (SIDS). With the warming of the Pacific and Indian Oceans and increased acidification, marine ecosystems are presently under stress. Despite these trends, maintaining or enhancing food production from the sea is critical. However, future sustainability must be maintained whilst also securing biodiversity conservation. Improved fisheries management to address the existing non-climate threats remains paramount in the Indian and Pacific Oceans with sustainable management regimes being established. Climate-related impacts are expected to increase in magnitude over the coming decades, thus preliminary adaptation to climate change is valuable.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2015Full-Text: https://hdl.handle.net/10568/68148Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-94...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-7338-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2015Full-Text: https://hdl.handle.net/10568/68148Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-94...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-7338-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Lepais, Olivier; Bacles, Cécile F. E.;doi: 10.1111/mec.12906
pmid: 25263401
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. () provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. () use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. ). By combining the two methods, De Kort et al. () were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. () provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. ).
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Australia, United KingdomPublisher:Cogitatio Hing-Wah Chau; Ian Gilzean; Elmira Jamei; Lesley Palmer; Terri Preece; Martin Quirke;handle: 1893/34586
Twenty-minute neighbourhoods highlight the importance of well-connected and mixed-used neighbourhoods and communities with proximate access to employment, essential services, public transport, and open spaces. Shorter distances together with re-prioritised public spaces encourage more active transport choices, resulting in public health benefits and reduced environmental pollution. Higher liveability brought about by mixed-use developments enables people to have equitable access to local facilities, amenities, and employment opportunities, promoting vibrancy, social cohesion, and intergenerational connections. The attributes of 20-minute neighbourhoods also combine to create places, that are acknowledged as friendly for all ages, address changing needs across the life course, and provide better support for the ageing population. Furthermore, there are indications that 20-minute neighbourhoods may be more resilient against many of the negative impacts of stringent public health protocols such as those implemented in periods of lockdown during the Covid-19 pandemic. In this article, we evaluate and compare planning policies and practices aimed at establishing 20-minute neighbourhoods in Melbourne (Australia) and Scotland (the UK). Using case studies, we discuss similarities and differences involved in using place-based approaches of 20-minute neighbourhoods to address 21st-century challenges in key areas of health and wellbeing, equity, environmental sustainability, and community resilience.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Snyder, Katherine A.; Ludi, Eva; Cullen, Beth; Tucker, Josephine; Zeleke, Alemayehu B; Duncan, Alan J.;doi: 10.1002/pad.1680
handle: 10568/56799
SUMMARYThis article discusses how decentralisation policies are enacted in the planning and implementation of natural resource management interventions in rural Ethiopia. A key element of decentralisation policy is the emphasis on greater participation by local communities. Drawing on qualitative research conducted with government staff and farmers, this paper illustrates how different actors perceive and implement national policy and how these actions affect the longer‐term sustainability of land management interventions. Copyright © 2014 John Wiley & Sons, Ltd.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAnna B. Harper; Peter M. Cox; Pierre Friedlingstein; Andy J. Wiltshire; Chris D. Jones; Stephen Sitch; Lina M. Mercado; Margriet Groenendijk; Eddy Robertson; Jens Kattge; Gerhard Bönisch; Owen K. Atkin; Michael Bahn; Johannes Cornelissen; Ülo Niinemets; Vladimir Onipchenko; Josep Peñuelas; Lourens Poorter; Peter B. Reich; Nadjeda A. Soudzilovskaia; Peter van Bodegom;Abstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Sep 2023Publisher:Dryad Limoges, Audrey; Ribeiro, Sofia; Van Nieuwenhove, Nicolas; Jackson, Rebecca; Juggins, Stephen; Crosta, Xavier; Weckström, Kaarina;A Calypso Square gravity core AMD15-Casq1 (543 cm) and corresponding box core (40 cm) were collected in 2015 from the central north NOW (77°15.035’ N, 74°25.500’ W, 692 m water depth) (Figure 1) during the ArcticNet Leg 4a, onboard the Canadian Coast Guard Ship Amundsen. Core chronology: The core chronology is based on 11 accelerator mass spectrometry (AMS) dates on mollusc shells from the Calypso core, and 210Pb and 137Cs measurements on 20 samples from the box core (see Jackson et al. (2021) for more details). Here, all radiocarbon dates were calibrated using the latest marine calibration curve (Marine20; Heaton et al., 2020; Table S1). In Jackson et al. (2021), and using the Marine13 calibration curve, a local reservoir correction of 140 ± 60 years was applied based on measurements from a live marine mollusc specimen collected from the NOW before the mid-1950’s (McNeely & Brennan, 2005). Using the Marine20 calibration curve, this specimen now yields a reservoir offset of –4 ± 60 years. In line with this reduced reservoir offset for the Marine 20 (vs. Marine13) calibration curve, and owing to the lack of a regional ΔR term for the polynya (Pieńkowski et al., 2023), no additional reservoir age correction (i.e., ΔR=0) was applied. A mixed age-depth model was constructed using the bacon-package in R (Blaauw & Christen, 2011). Accordingly, the composite core covers the last ca. 3800 cal years BP. We note that the new calibration only resulted in negligible changes compared to the age model presented in Jackson et al. (2021). Diatom analyses: Sediment samples for diatom analysis were prepared following the protocol described in Crosta et al. (2020). Approximately 0.3 g of dry sediment was treated with an oxidative solution composed of hydrogen peroxide (H2O2), distilled water and tetrasodium pyrophosphate (decahydrate, Na4O7P2-10H2O) in a warm bath (~65°C) for several hours until the reaction ceased. The residue was then rinsed repeatedly with distilled water by centrifugation (7 min at 1200 rpm). Hydrochloric acid (HCl, 30%) was used to remove the carbonate content. The residue was again rinsed several times until neutral pH, and microscopy slides were mounted in Naphrax©. In each sample, ca. 300 diatom valves were identified to the lowest taxonomic level possible. Resting spores of Chaetoceros were counted, but not included in the relative abundance calculations. Census counts were done using a light microscope (Olympus BX53, UNB) with dark field, phase contrast optics and oil immersion, at 1000X magnification. We followed the counting rules presented in Crosta and Koç (2007): specimens were counted when at least half of the valve was observed, with the exception of Rhizosolenia and Thalassiothrix taxa that were only counted when the spine-like proboscis or appendix was visible, respectively. The Pikialasorsuaq (North Water polynya) is an area of local and global cultural and ecological significance. However, over the last decades, the region has been subject to rapid warming and, in some recent years, the seasonal ice arch that has historically defined the polynya’s northern boundary has failed to form. Both factors are deemed to alter the polynya’s ecosystem functioning. To understand how climate-induced changes to the Pikialasorsuaq impact the basis of the marine food web, we explored diatom community-level responses to changing conditions, from a sediment core spanning the last 3800 years. Four metrics were used: total diatom concentrations, taxonomic composition, mean size, and diversity. Generalized additive model statistics highlight significant changes at ca. 2400, 2050, 1550, 1200, and 130 cal years BP, all coeval with known transitions between colder and warmer intervals of the Late Holocene, and regime shifts in the Pikialasorsuaq. Notably, a weaker/contracted polynya during the Roman Warm Period and Medieval Climate Anomaly caused the diatom community to reorganize via shifts in species composition, with the presence of larger taxa but lower diversity, and significantly reduced export production. This study underlines the high sensitivity of primary producers to changes in the polynya dynamics and illustrates that the strong pulse of early-spring cryopelagic diatoms that makes the Pikialasorsuaq exceptionally productive may be jeopardized by rapid warming and associated Nares Strait ice arch destabilization. Future alterations to the phenology of primary producers may disproportionately impact higher trophic levels and keystone species in this region, with implications for Indigenous Peoples and global diversity. # Marine diatoms record Late Holocene regime shifts in the Pikialasorsuaq ecosystem [https://doi.org/10.5061/dryad.cz8w9gj8p](https://doi.org/10.5061/dryad.cz8w9gj8p) This dataset includes diatom counts (relative abundances, %) from core AMD15-Casq1. Diatoms were analyzed at a 1 to 10 cm sampling interval, which corresponds to an effective age resolution ranging from ca. 3 to 64 years (mean: 31 years). Absolute abundances are reported in valves per g of dry sediment. Fluxes were calculated by combining diatom concentrations (valves and spores g-1) with mass accumulation rates (g cm-2 yr-1). ## Description of the data and file structure Diatom data are presented against depth and modelled age (years BP) in the sediment archive. ## Sharing/Access information n/a ## Code/Software n/a
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cz8w9gj8p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Boucher, Olivier; Denvil, Sébastien; Levavasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghattas, Josefine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.IPSL.IPSL-CM6A-LR.piControl' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The IPSL-CM6A-LR climate model, released in 2017, includes the following components: atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3. The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmipiclpc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmipiclpc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Voldoire, Aurore;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.HighResMIP.CNRM-CERFACS.CNRM-CM6-1-HR.hist-1950' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2h1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2h1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Hutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; +18 AuthorsHutchinson, David K; Coxall, Helen K.; Lunt, Daniel J.; Steinthorsdottir, Margret; de Boer, Agatha M.; Baatsen, Michiel; von der Heydt, Anna; Huber, Matthew; Kennedy-Asser, Alan T.; Kunzmann, Lutz; Ladant, Jean-Baptiste; Lear, Caroline H.; Moraweck, Karolin; Pearson, Paul N.; Piga, Emanuela; Pound, Matthew J.; Salzmann, Ulrich; Scher, Howie D.; Sijp, Willem P.; Sliwinska, Kasia K.; Wilson, Paul A.; Zhang, Zongshi;This data package contains data used for an model-data intercomparison originally published in: D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. de Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, and Z. Zhang, 2021: The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons, Climate of the Past, 17, 269-315. https://doi.org/10.5194/cp-17-269-2021 These data are also used in a further model-data intercomparison of Antarctic temperatures: Emily Tibbett, Natalie J Burls, David K. Hutchinson, Sarah J Feakins, (2023), Proxy-Model Comparison for the Eocene-Oligocene Transition in Southern High Latitudes, Paleoceanography and Paleocliamtology, In Review. Pre-print avaiable from: https://www.authorea.com/doi/full/10.1002/essoar.10511735.2 The package contains surface air temperature and sea surface temperature from an ensemble of model simulations of the Eocene-Oligocene transition. These data are provided at annual and monthly frequency. They are also provided on the original model grid, and an interpolated common grid used for the intercomparison. (The common grid is based on the HadCM3BL model grid.) All data are provided in NETCDF format with self-describing variable names. The name and explanation of the interpolated data files are contained in: table_of_experiments.xlsx Please read that spreadsheet to interpret the filenames, and see Table 2 (p291) of Hutchinson et al (2021) for experiment descriptions. Please also be mindful to cite the original authors of the simulations when using these data, whose work made this dataset possible. The appropriate citations are listed below: Reference DOI link Baatsen et al (2020) https://doi.org/10.5194/cp-16-2573-2020 Goldner et al (2014) https://doi.org/10.1038/nature13597 Ladant et al (2014a,b) https://doi.org/10.5194/cp-10-1957-2014 https://doi.org/10.1002/2013PA002593 Hutchinson et al (2018, 2019) https://doi.org/10.5194/cp-14-789-2018 https://doi.org/10.1038/s41467-019-11828-z Kennedy et al (2015) https://doi.org/10.1098/rsta.2014.0419 Zhang et al (2012, 2014) https://doi.org/10.5194/gmd-5-523-2012 https://doi.org/10.1038/nature13705 Sijp et al (2009) https://doi.org/10.1175/2009JCLI3003.1
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 85visibility views 85 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7540321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2013 France, France, India, AustraliaPublisher:Springer Netherlands Heath, L.; Salinger, M. J.; Falkland, T.; Hansen, J.; Jiang, K.; Kameyama, Y.; Kishi, M.; Lebel, L.; Meinke, H.; Morton, K.; Nikitina, E.; Shukla, P. R.; White, I.;handle: 10568/68148 , 1885/26609 , 11718/13190
The impacts of increasing natural climate disasters are threatening food security in the Asia-Pacific region. Rice is Asia’s most important staple food. Climate variability and change directly impact rice production, through changes in rainfall, temperature and CO2 concentrations. The key for sustainable rice crop is water management. Adaptation can occur through shifts of cropping to higher latitudes and can profit from river systems (via irrigation) so far not considered. New opportunities arise to produce more than one crop per year in cooler areas. Asian wheat production in 2005 represents about 43 % of the global total. Changes in agronomic practices, such as earlier plant dates and cultivar substitution will be required. Fisheries play a crucial role in providing food security with the contribution of fish to dietary animal protein being very high in the region – up to 90 % in small island developing states (SIDS). With the warming of the Pacific and Indian Oceans and increased acidification, marine ecosystems are presently under stress. Despite these trends, maintaining or enhancing food production from the sea is critical. However, future sustainability must be maintained whilst also securing biodiversity conservation. Improved fisheries management to address the existing non-climate threats remains paramount in the Indian and Pacific Oceans with sustainable management regimes being established. Climate-related impacts are expected to increase in magnitude over the coming decades, thus preliminary adaptation to climate change is valuable.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2015Full-Text: https://hdl.handle.net/10568/68148Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-94...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-7338-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2015Full-Text: https://hdl.handle.net/10568/68148Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-94...Part of book or chapter of book . 2013 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-94-007-7338-7_4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Lepais, Olivier; Bacles, Cécile F. E.;doi: 10.1111/mec.12906
pmid: 25263401
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. () provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. () use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. ). By combining the two methods, De Kort et al. () were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. () provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. ).
Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Molecular Ecology arrow_drop_down Molecular EcologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/mec.12906&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Australia, United KingdomPublisher:Cogitatio Hing-Wah Chau; Ian Gilzean; Elmira Jamei; Lesley Palmer; Terri Preece; Martin Quirke;handle: 1893/34586
Twenty-minute neighbourhoods highlight the importance of well-connected and mixed-used neighbourhoods and communities with proximate access to employment, essential services, public transport, and open spaces. Shorter distances together with re-prioritised public spaces encourage more active transport choices, resulting in public health benefits and reduced environmental pollution. Higher liveability brought about by mixed-use developments enables people to have equitable access to local facilities, amenities, and employment opportunities, promoting vibrancy, social cohesion, and intergenerational connections. The attributes of 20-minute neighbourhoods also combine to create places, that are acknowledged as friendly for all ages, address changing needs across the life course, and provide better support for the ageing population. Furthermore, there are indications that 20-minute neighbourhoods may be more resilient against many of the negative impacts of stringent public health protocols such as those implemented in periods of lockdown during the Covid-19 pandemic. In this article, we evaluate and compare planning policies and practices aimed at establishing 20-minute neighbourhoods in Melbourne (Australia) and Scotland (the UK). Using case studies, we discuss similarities and differences involved in using place-based approaches of 20-minute neighbourhoods to address 21st-century challenges in key areas of health and wellbeing, equity, environmental sustainability, and community resilience.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Wiley Snyder, Katherine A.; Ludi, Eva; Cullen, Beth; Tucker, Josephine; Zeleke, Alemayehu B; Duncan, Alan J.;doi: 10.1002/pad.1680
handle: 10568/56799
SUMMARYThis article discusses how decentralisation policies are enacted in the planning and implementation of natural resource management interventions in rural Ethiopia. A key element of decentralisation policy is the emphasis on greater participation by local communities. Drawing on qualitative research conducted with government staff and farmers, this paper illustrates how different actors perceive and implement national policy and how these actions affect the longer‐term sustainability of land management interventions. Copyright © 2014 John Wiley & Sons, Ltd.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2015Full-Text: https://hdl.handle.net/10568/56799Data sources: Bielefeld Academic Search Engine (BASE)Public Administration and DevelopmentArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pad.1680&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 United Kingdom, Netherlands, Spain, AustraliaPublisher:Copernicus GmbH Funded by:EC | SIP-VOL+, ARC | ARC Centres of Excellence..., RSF | Scientific basis of the n... +2 projectsEC| SIP-VOL+ ,ARC| ARC Centres of Excellences - Grant ID: CE140100008 ,RSF| Scientific basis of the national biobank - depository of the living systems ,UKRI| Process-Based Emergent Constraints on Global Physical and Biogeochemical Feedbacks ,EC| IMBALANCE-PAnna B. Harper; Peter M. Cox; Pierre Friedlingstein; Andy J. Wiltshire; Chris D. Jones; Stephen Sitch; Lina M. Mercado; Margriet Groenendijk; Eddy Robertson; Jens Kattge; Gerhard Bönisch; Owen K. Atkin; Michael Bahn; Johannes Cornelissen; Ülo Niinemets; Vladimir Onipchenko; Josep Peñuelas; Lourens Poorter; Peter B. Reich; Nadjeda A. Soudzilovskaia; Peter van Bodegom;Abstract. Dynamic global vegetation models are used to predict the response of vegetation to climate change. They are essential for planning ecosystem management, understanding carbon cycle–climate feedbacks, and evaluating the potential impacts of climate change on global ecosystems. JULES (the Joint UK Land Environment Simulator) represents terrestrial processes in the UK Hadley Centre family of models and in the first generation UK Earth System Model. Previously, JULES represented five plant functional types (PFTs): broadleaf trees, needle-leaf trees, C3 and C4 grasses, and shrubs. This study addresses three developments in JULES. First, trees and shrubs were split into deciduous and evergreen PFTs to better represent the range of leaf life spans and metabolic capacities that exists in nature. Second, we distinguished between temperate and tropical broadleaf evergreen trees. These first two changes result in a new set of nine PFTs: tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and deciduous shrubs. Third, using data from the TRY database, we updated the relationship between leaf nitrogen and the maximum rate of carboxylation of Rubisco (Vcmax), and updated the leaf turnover and growth rates to include a trade-off between leaf life span and leaf mass per unit area.Overall, the simulation of gross and net primary productivity (GPP and NPP, respectively) is improved with the nine PFTs when compared to FLUXNET sites, a global GPP data set based on FLUXNET, and MODIS NPP. Compared to the standard five PFTs, the new nine PFTs simulate a higher GPP and NPP, with the exception of C3 grasses in cold environments and C4 grasses that were previously over-productive. On a biome scale, GPP is improved for all eight biomes evaluated and NPP is improved for most biomes – the exceptions being the tropical forests, savannahs, and extratropical mixed forests where simulated NPP is too high. With the new PFTs, the global present-day GPP and NPP are 128 and 62 Pg C year−1, respectively. We conclude that the inclusion of trait-based data and the evergreen/deciduous distinction has substantially improved productivity fluxes in JULES, in particular the representation of GPP. These developments increase the realism of JULES, enabling higher confidence in simulations of vegetation dynamics and carbon storage.
University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 109 citations 109 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 26 Powered bymore_vert University of Wester... arrow_drop_down University of Western Sydney (UWS): Research DirectArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYData sources: Bielefeld Academic Search Engine (BASE)Geoscientific Model Development (GMD)Article . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2016License: CC BYData sources: Diposit Digital de Documents de la UABWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-9-2415-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Stephen Joseph; Stephen Joseph; Stephen Joseph; Genxing Pan; Simon Shackley; A. Anthony Bloom; Abbie Clare; Abbie Clare; James Hammond; James Hammond;doi: 10.1111/gcbb.12220
AbstractChina is under pressure to improve its agricultural productivity to keep up with the demands of a growing population with increasingly resource‐intensive diets. This productivity improvement must occur against a backdrop of carbon intensity reduction targets, and a highly fragmented, nutrient‐inefficient farming system. Moreover, the Chinese government increasingly recognizes the need to rationalize the management of the 800 million tonnes of agricultural crop straw that China produces each year, up to 40% of which is burned in‐field as a waste. Biochar produced from these residues and applied to land could contribute to China's agricultural productivity, resource use efficiency and carbon reduction goals. However competing uses for China's straw residues are rapidly emerging, particularly from bioenergy generation. Therefore it is important to understand the relative economic viability and carbon abatement potential of directing agricultural residues to biochar rather than bioenergy. Using cost‐benefit analysis (CBA) and life‐cycle analysis (LCA), this paper therefore compares the economic viability and carbon abatement potential of biochar production via pyrolysis, with that of bioenergy production via briquetting and gasification. Straw reincorporation and in‐field straw burning are used as baseline scenarios. We find that briquetting straw for heat energy is the most cost‐effective carbon abatement technology, requiring a subsidy of $7 MgCO2e−1 abated. However China's current bioelectricity subsidy scheme makes gasification (NPV $12.6 million) more financially attractive for investors than both briquetting (NPV $7.34 million), and pyrolysis ($−1.84 million). The direct carbon abatement potential of pyrolysis (1.06 MgCO2e per odt straw) is also lower than that of briquetting (1.35 MgCO2e per odt straw) and gasification (1.16 MgCO2e per odt straw). However indirect carbon abatement processes arising from biochar application could significantly improve the carbon abatement potential of the pyrolysis scenario. Likewise, increasing the agronomic value of biochar is essential for the pyrolysis scenario to compete as an economically viable, cost‐effective mitigation technology.
GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 135 citations 135 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GCB Bioenergy arrow_drop_down GCB BioenergyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12220&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu