- home
- Advanced Search
- Energy Research
- 2021-2025
- biological sciences
- GB
- AU
- Energy Research
- 2021-2025
- biological sciences
- GB
- AU
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Malaysia, Malaysia, AustraliaPublisher:MDPI AG Khawer Khan; Noaman Ul-Haq; Wajeeh Ur Rahman; Muzaffar Ali; Umer Rashid; Anwar Ul-Haq; Farrukh Jamil; Ashfaq Ahmed; Faisal Ahmed; Bryan R. Moser; Ali Alsalme;The synthesis of biodiesel from Jatropha curcas by transesterification is kinetically controlled. It depends on the molar ratio, reaction time, and temperature, as well as the catalyst nature and quantity. The aim of this study was to explore the transesterification of low-cost, inedible J. curcas seed oil utilizing both homogenous (potassium hydroxide; KOH) and heterogenous (calcium oxide; CaO) catalysis. In this effort, two steps were used. First, free fatty acids in J. curcas oil were reduced from 12.4 to less than 1 wt.% with sulfuric acid-catalyzed pretreatment. Transesterification subsequently converted the oil to biodiesel. The yield of fatty acid methyl esters was optimized by varying the reaction time, catalyst load, and methanol-to-oil molar ratio. A maximum yield of 96% was obtained from CaO nanoparticles at a reaction time of 5.5 h with 4 wt.% of the catalyst and an 18:1 methanol-to-oil molar ratio. The optimum conditions for KOH were a molar ratio of methanol to oil of 9:1, 5 wt.% of the catalyst, and a reaction time of 3.5 h, and this returned a yield of 92%. The fuel properties of the optimized biodiesel were within the limits specified in ASTM D6751, the American biodiesel standard. In addition, the 5% blends in petroleum diesel were within the ranges prescribed in ASTM D975, the American diesel fuel standard.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/12/1420/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/43314/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11121420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/12/1420/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/43314/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11121420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Funded by:UKRI | Revealing the interaction..., UKRI | Developing integrated env...UKRI| Revealing the interactions between global biodiversity change and human food security ,UKRI| Developing integrated environmental indicators for sustainable global food production and tradeCharlotte L. Outhwaite; A. Monica D. Ortiz; Fiona E. B. Spooner; Carole Dalin; Tim Newbold;doi: 10.1111/geb.13532
AbstractAimAgriculture is one of the greatest pressures on biodiversity. Regional studies have shown that the presence of natural habitat and landscape heterogeneity are beneficial for biodiversity in agriculture, but it remains unclear whether their importance varies geographically. Here, we use local biodiversity data to determine which local and landscape variables are most associated with biodiversity patterns and whether their association varies between tropical and non‐tropical regions.LocationGlobal terrestrial area in forest biomes.Major taxa studiedMore than 21,000 species of vertebrates, invertebrates, plants and other taxa.MethodsWe used generalized linear mixed‐effects models to analyse the relationships between either community total abundance or species richness (derived from the PREDICTS database) and a number of site‐level (predominant land use and land‐use intensity) and landscape‐level variables (distance to forest, the percentage of natural habitat in the surrounding landscape, landscape homogeneity, the number of land‐cover types in the landscape, and total fertilizer application). We compared the associations of these variables with biodiversity in tropical and non‐tropical regions.ResultsIn most cases, changes in biodiversity associated with landscape‐level variables were greater than those associated with local land use and land‐use intensity. Increased natural habitat availability was associated with the most consistent increases in biodiversity. Landscape homogeneity was also important but showed different directions of biodiversity change between regions. Associations with fertilizer application or the number of land‐cover types were generally weaker, although still of greater magnitude than for the local land‐use measures.Main conclusionsOur results highlight similarities and differences in the association of local‐ and landscape‐scale variables with local biodiversity in tropical and non‐tropical regions. Landscape natural habitat availability had a consistent positive association with biodiversity, highlighting the key role of landscape management in the maintenance of biodiversity in croplands. Landscape‐scale variables were almost always associated with greater changes in biodiversity than the local‐scale measures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Italy, Italy, ItalyPublisher:Annual Reviews Jérôme Poulenard; Wilfried Thuiller; Roberto Ambrosini; Marco Caccianiga; Alessia Guerrieri; Gentile Francesco Ficetola; Gentile Francesco Ficetola; Silvio Marta; Mauro Gobbi; Diego Fontaneto; Andrea Zerboni;handle: 20.500.14243/397511 , 2434/885745
Glaciers are retreating globally, and the resulting ice-free areas provide an experimental system for understanding species colonization patterns, community formation, and dynamics. The last several years have seen crucial advances in our understanding of biotic colonization after glacier retreats, resulting from the integration of methodological innovations and ecological theories. Recent empirical studies have demonstrated how multiple factors can speed up or slow down the velocity of colonization and have helped scientists develop theoretical models that describe spatiotemporalchanges in community structure. There is a growing awareness of how different processes (e.g., time since glacier retreat, onset or interruption of surface processes, abiotic factors, dispersal, biotic interactions) interact to shape community formation and, ultimately, their functional structure through succession. Here, we examine how these studies address key theoretical questions about community dynamics and show how classical approaches are increasingly being combined with environmental DNA metabarcoding and functional trait analysis to document the formation of multitrophic communities, revolutionizing our understanding of the biotic processes that occur following glacier retreat.
Archivio Istituziona... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-010521-040017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-010521-040017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:MDPI AG Kennedy Masamba; Wisdom Changadeya; Pheneas Ntawuruhunga; Pilirani Pankomera; Willard Mbewe; Felistus Chipungu;doi: 10.3390/su14052719
handle: 10568/119172
Cassava utilisation in Malawi is negatively affected by rapid deterioration of fresh roots, primarily caused by postharvest physiological deterioration (PPD). A study was conducted to assess farmers’ knowledge and approaches used to minimize losses from PPD. Multi-stage sampling was used to identify districts, Extension Planning Areas (EPA’s) and farmers. Data were collected from 519 farmers using a structured questionnaire. Results revealed that PPD (74.0%) was the major post-harvest constraint followed by pests and diseases (62.1%). Farmers had varying knowledge levels on signs and causes of PPD. They were knowledgeable on PPD signs with 91.5% ably identifying PPD through change of pulp colour. The farmers also had moderate knowledge on causes of PPD, citing high temperature (57.6%) and over-staying of roots (56.2%) as main causes of PPD. Key methods for preventing PPD are: storage (43.0%) and piece-meal harvesting (40.4%). Only 2.6% of the farmers exploited varietal difference in dealing with PPD as some varieties (Sauti, Mpuma, Ching’amba, and Kalasa) take three to five days before showing PPD signs. Farmers’ knowledge levels and PPD preventive methods could be strengthened through: provision of training on post-harvest handling, improvement in storage and processing technologies; and application of advanced breeding techniques to exploit genetic variation in cassava germplasm.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2719/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119172Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2719/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119172Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Schweizerbart Weinberg, J.; Ota, N.; Goergen, Georg; Fagbohoun, J.R.; Tepa-Yotto, G.; Kriticos, D.J.;handle: 10568/126592
Spodoptera eridania (Stoll), a polyphagous lepidopteran pest from the Americas, has recently invaded western and central Africa. Like its congeners, S. eridania has developed pesticide resistance. The rapid global spread and impacts of Spodoptera frugiperda (J.E. Smith) has raised concerns about whether S. eridania is set to do the same. Here we fit a CLIMEX niche model for S. eridania and apply a climate change scenario for 2050 to investigate the sensitivity of the pest threat. We find that S. eridania can potentially expand its range throughout the tropics and into the sub-tropics, threatening a range of important commercial and subsistence crops. An important feature of the pest threat posed by S. eridania is the extent of its ephemeral habitat during warmer months. Modelled climatic changes will mostly expand this species potential range poleward by around 200 km by 2050, indicating a moderate sensitivity. These areas of emerging potential expansion are mostly into subtropical climates, supporting diverse cropping systems, including at risk crops beans, groundnut, potato, soybeans, tomato and sweet potato. The potential distribution of S. eridania in the Amazon basin and the southern boundary of the Sahara Desert appear set to contract substantially due to increasing heat stress. While it may not be as invasive as some of its congeners, nor acquire pesticide resistance as readily, S. eridania does have some of these traits, and the current and emerging pest threat posed by this moth deserves closer attention, especially in relation to intercontinental phytosanitary measures to slow its spread.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126592Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/entomologia/2022/1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126592Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/entomologia/2022/1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Australia, SwitzerlandPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100574 ,ARC| Discovery Projects - Grant ID: DP170100837Authors: Abigail I. Pastore; Janneke HilleRisLambers; Margaret M. Mayfield; Maia L. Raymundo; +1 AuthorsAbigail I. Pastore; Janneke HilleRisLambers; Margaret M. Mayfield; Maia L. Raymundo; Maia L. Raymundo;handle: 11343/310633
Natural ecosystems are threatened by climate change, fragmentation, and non-native species. Dispersal-limitation potentially compounds impacts of these factors on plant diversity, especially in isolated vegetation patches. Changes in climate can impact the phenology of native species in distinct ways from non-natives, potentially resulting in cascading impacts on native communities. Few empirical studies have examined the combined effects of climate change and dispersal limitation on community diversity or phenology. Using a five-year dispersal-restriction experiment in an invaded semi-arid annual plant system in Western Australia, we investigated the interactive effects of dispersal-restriction and inter-annual rainfall variation on community composition, species dominance and seed production timing. We found inter-annual rainfall variation to be the principal driver of community dynamics. Drought years had long-term, stable effects on community composition, with evidence of shifts from native toward non-native dominance. Surprisingly, community composition remained largely unchanged under dispersal restriction. A subtle dispersal rescue effect was evident for a dominant native annual forb and a dominant annual non-native grass but only in average rainfall years. The timing of seed production was primarily driven by annual rainfall with native and non-native grasses having opposite responses. There was no evidence that inter-annual variation in seeding timing affected community diversity over time. Our study demonstrates that dispersal is not a major factor in driving community diversity in this invaded, semi-arid system. Results do suggest, however, that increases in drought frequency likely benefit non-native species over natives in the long term. Climate Change Ecology, 2 ISSN:2666-9005
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/310633Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecochg.2021.100024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/310633Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecochg.2021.100024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Chile, United KingdomPublisher:Proceedings of the National Academy of Sciences Ivan D. Haigh; Marc Rius; Marc Rius; Christopher D. McQuaid; Juan Carlos Castilla; Luciano B. Beheregaray; Jamie Hudson; Peter R. Teske;Significance Species with narrow distributions provide unique opportunities for understanding the mechanisms that limit their spread. We studied a marine invader that exhibits ecological dominance within its range and has the capacity to fundamentally alter the coastal habitat when introduced to new locations. We found evidence of the species’ potential to establish itself far beyond its present introduced range from both genomic data and species distribution modeling. Therefore, minor oceanographic changes (due to, for example, contemporary climate change) or alteration to human-mediated dispersal may trigger a large-scale invasion along vast stretches of coastlines. Our work provides a holistic framework to assess potential changes in the distribution of invasive species.
e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:The Royal Society Authors: Hugh J. Hanmer; Philipp H. Boersch-Supan; Robert A. Robinson;Climate change affects the phenology of annual life cycle events of organisms, such as reproduction and migration. Shifts in the timing of these events could have important population implications directly, or provide information about the mechanisms driving population trajectories, especially if they differ between life cycle event. We examine if such shifts occur in a declining migratory passerine bird (willow warbler, Phylloscopus trochilus ), which exhibits latitudinally diverging population trajectories. We find evidence of phenological shifts in breeding initiation, breeding progression and moult that differ across geographic and spring temperature gradients. Moult initiation following warmer springs advances faster in the south than in the north, resulting in proportionally shorter breeding seasons, reflecting higher nest failure rates in the south and in warmer years. Tracking shifts in multiple life cycle events allowed us to identify points of failure in the breeding cycle in regions where the species has negative population trends, thereby demonstrating the utility of phenology analyses for illuminating mechanistic pathways underlying observed population trajectories.
PubMed Central arrow_drop_down Biology LettersArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2022.0186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PubMed Central arrow_drop_down Biology LettersArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2022.0186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Funded by:UKRI | Standard Approach to atMP...UKRI| Standard Approach to atMP tissue ColLEction (Sample)Authors: Anthony Truong; Matthew Edwards; Jeremy Long;AbstractUnderstory assemblages associated with canopy‐forming species such as trees, kelps, and rockweeds should respond strongly to climate stressors due to strong canopy‐understory interactions. Climate change can directly and indirectly modify these assemblages, particularly during more stressful seasons and climate scenarios. However, fully understanding the seasonal impacts of different climate conditions on canopy‐reliant assemblages is difficult due to a continued emphasis on studying single‐species responses to a single future climate scenario during a single season. To examine these emergent effects, we used mesocosm experiments to expose seaweed assemblages associated with the canopy‐forming golden rockweed, Silvetia compressa, to elevated temperature and pCO2 conditions reflecting two projected greenhouse emission scenarios (RCP 2.6 [low] & RCP 4.5 [moderate]). Assemblages were grown in the presence and absence of Silvetia, and in two seasons. Relative to ambient conditions, predicted climate scenarios generally suppressed Silvetia biomass and photosynthetic efficiency. However, these effects varied seasonally—both future scenarios reduced Silvetia biomass in summer, but only the moderate scenario did so in winter. These reductions shifted the assemblage, with more extreme shifts occurring in summer. Contrarily, future scenarios did not shift assemblages within Silvetia Absent treatments, suggesting that climate primarily affected assemblages indirectly through changes in Silvetia. Mesocosm experiments were coupled with a field Silvetia removal experiment to simulate the effects of climate‐mediated Silvetia loss on natural assemblages. Consistent with the mesocosm experiment, Silvetia loss resulted in season‐specific assemblage shifts, with weaker effects observed in winter. Together, our study supports the hypotheses that climate‐mediated changes to canopy‐forming species can indirectly affect the associated assemblage, and that these effects vary seasonally. Such seasonality is important to consider as it may provide periods of recovery when conditions are less stressful, especially if we can reduce the severity of future climate scenarios.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.10947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.10947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Malaysia, Malaysia, AustraliaPublisher:MDPI AG Khawer Khan; Noaman Ul-Haq; Wajeeh Ur Rahman; Muzaffar Ali; Umer Rashid; Anwar Ul-Haq; Farrukh Jamil; Ashfaq Ahmed; Faisal Ahmed; Bryan R. Moser; Ali Alsalme;The synthesis of biodiesel from Jatropha curcas by transesterification is kinetically controlled. It depends on the molar ratio, reaction time, and temperature, as well as the catalyst nature and quantity. The aim of this study was to explore the transesterification of low-cost, inedible J. curcas seed oil utilizing both homogenous (potassium hydroxide; KOH) and heterogenous (calcium oxide; CaO) catalysis. In this effort, two steps were used. First, free fatty acids in J. curcas oil were reduced from 12.4 to less than 1 wt.% with sulfuric acid-catalyzed pretreatment. Transesterification subsequently converted the oil to biodiesel. The yield of fatty acid methyl esters was optimized by varying the reaction time, catalyst load, and methanol-to-oil molar ratio. A maximum yield of 96% was obtained from CaO nanoparticles at a reaction time of 5.5 h with 4 wt.% of the catalyst and an 18:1 methanol-to-oil molar ratio. The optimum conditions for KOH were a molar ratio of methanol to oil of 9:1, 5 wt.% of the catalyst, and a reaction time of 3.5 h, and this returned a yield of 92%. The fuel properties of the optimized biodiesel were within the limits specified in ASTM D6751, the American biodiesel standard. In addition, the 5% blends in petroleum diesel were within the ranges prescribed in ASTM D975, the American diesel fuel standard.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/12/1420/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/43314/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11121420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/12/1420/pdfData sources: Multidisciplinary Digital Publishing InstituteVU Research RepositoryArticle . 2021License: CC BYFull-Text: https://vuir.vu.edu.au/43314/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11121420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Wiley Funded by:UKRI | Revealing the interaction..., UKRI | Developing integrated env...UKRI| Revealing the interactions between global biodiversity change and human food security ,UKRI| Developing integrated environmental indicators for sustainable global food production and tradeCharlotte L. Outhwaite; A. Monica D. Ortiz; Fiona E. B. Spooner; Carole Dalin; Tim Newbold;doi: 10.1111/geb.13532
AbstractAimAgriculture is one of the greatest pressures on biodiversity. Regional studies have shown that the presence of natural habitat and landscape heterogeneity are beneficial for biodiversity in agriculture, but it remains unclear whether their importance varies geographically. Here, we use local biodiversity data to determine which local and landscape variables are most associated with biodiversity patterns and whether their association varies between tropical and non‐tropical regions.LocationGlobal terrestrial area in forest biomes.Major taxa studiedMore than 21,000 species of vertebrates, invertebrates, plants and other taxa.MethodsWe used generalized linear mixed‐effects models to analyse the relationships between either community total abundance or species richness (derived from the PREDICTS database) and a number of site‐level (predominant land use and land‐use intensity) and landscape‐level variables (distance to forest, the percentage of natural habitat in the surrounding landscape, landscape homogeneity, the number of land‐cover types in the landscape, and total fertilizer application). We compared the associations of these variables with biodiversity in tropical and non‐tropical regions.ResultsIn most cases, changes in biodiversity associated with landscape‐level variables were greater than those associated with local land use and land‐use intensity. Increased natural habitat availability was associated with the most consistent increases in biodiversity. Landscape homogeneity was also important but showed different directions of biodiversity change between regions. Associations with fertilizer application or the number of land‐cover types were generally weaker, although still of greater magnitude than for the local land‐use measures.Main conclusionsOur results highlight similarities and differences in the association of local‐ and landscape‐scale variables with local biodiversity in tropical and non‐tropical regions. Landscape natural habitat availability had a consistent positive association with biodiversity, highlighting the key role of landscape management in the maintenance of biodiversity in croplands. Landscape‐scale variables were almost always associated with greater changes in biodiversity than the local‐scale measures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/geb.13532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, Italy, Italy, ItalyPublisher:Annual Reviews Jérôme Poulenard; Wilfried Thuiller; Roberto Ambrosini; Marco Caccianiga; Alessia Guerrieri; Gentile Francesco Ficetola; Gentile Francesco Ficetola; Silvio Marta; Mauro Gobbi; Diego Fontaneto; Andrea Zerboni;handle: 20.500.14243/397511 , 2434/885745
Glaciers are retreating globally, and the resulting ice-free areas provide an experimental system for understanding species colonization patterns, community formation, and dynamics. The last several years have seen crucial advances in our understanding of biotic colonization after glacier retreats, resulting from the integration of methodological innovations and ecological theories. Recent empirical studies have demonstrated how multiple factors can speed up or slow down the velocity of colonization and have helped scientists develop theoretical models that describe spatiotemporalchanges in community structure. There is a growing awareness of how different processes (e.g., time since glacier retreat, onset or interruption of surface processes, abiotic factors, dispersal, biotic interactions) interact to shape community formation and, ultimately, their functional structure through succession. Here, we examine how these studies address key theoretical questions about community dynamics and show how classical approaches are increasingly being combined with environmental DNA metabarcoding and functional trait analysis to document the formation of multitrophic communities, revolutionizing our understanding of the biotic processes that occur following glacier retreat.
Archivio Istituziona... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-010521-040017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Annual Review of Ecology Evolution and SystematicsArticle . 2021 . Peer-reviewedData sources: CrossrefUniversité Savoie Mont Blanc: HALArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1146/annurev-ecolsys-010521-040017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:MDPI AG Kennedy Masamba; Wisdom Changadeya; Pheneas Ntawuruhunga; Pilirani Pankomera; Willard Mbewe; Felistus Chipungu;doi: 10.3390/su14052719
handle: 10568/119172
Cassava utilisation in Malawi is negatively affected by rapid deterioration of fresh roots, primarily caused by postharvest physiological deterioration (PPD). A study was conducted to assess farmers’ knowledge and approaches used to minimize losses from PPD. Multi-stage sampling was used to identify districts, Extension Planning Areas (EPA’s) and farmers. Data were collected from 519 farmers using a structured questionnaire. Results revealed that PPD (74.0%) was the major post-harvest constraint followed by pests and diseases (62.1%). Farmers had varying knowledge levels on signs and causes of PPD. They were knowledgeable on PPD signs with 91.5% ably identifying PPD through change of pulp colour. The farmers also had moderate knowledge on causes of PPD, citing high temperature (57.6%) and over-staying of roots (56.2%) as main causes of PPD. Key methods for preventing PPD are: storage (43.0%) and piece-meal harvesting (40.4%). Only 2.6% of the farmers exploited varietal difference in dealing with PPD as some varieties (Sauti, Mpuma, Ching’amba, and Kalasa) take three to five days before showing PPD signs. Farmers’ knowledge levels and PPD preventive methods could be strengthened through: provision of training on post-harvest handling, improvement in storage and processing technologies; and application of advanced breeding techniques to exploit genetic variation in cassava germplasm.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2719/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119172Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2719/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119172Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Schweizerbart Weinberg, J.; Ota, N.; Goergen, Georg; Fagbohoun, J.R.; Tepa-Yotto, G.; Kriticos, D.J.;handle: 10568/126592
Spodoptera eridania (Stoll), a polyphagous lepidopteran pest from the Americas, has recently invaded western and central Africa. Like its congeners, S. eridania has developed pesticide resistance. The rapid global spread and impacts of Spodoptera frugiperda (J.E. Smith) has raised concerns about whether S. eridania is set to do the same. Here we fit a CLIMEX niche model for S. eridania and apply a climate change scenario for 2050 to investigate the sensitivity of the pest threat. We find that S. eridania can potentially expand its range throughout the tropics and into the sub-tropics, threatening a range of important commercial and subsistence crops. An important feature of the pest threat posed by S. eridania is the extent of its ephemeral habitat during warmer months. Modelled climatic changes will mostly expand this species potential range poleward by around 200 km by 2050, indicating a moderate sensitivity. These areas of emerging potential expansion are mostly into subtropical climates, supporting diverse cropping systems, including at risk crops beans, groundnut, potato, soybeans, tomato and sweet potato. The potential distribution of S. eridania in the Amazon basin and the southern boundary of the Sahara Desert appear set to contract substantially due to increasing heat stress. While it may not be as invasive as some of its congeners, nor acquire pesticide resistance as readily, S. eridania does have some of these traits, and the current and emerging pest threat posed by this moth deserves closer attention, especially in relation to intercontinental phytosanitary measures to slow its spread.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126592Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/entomologia/2022/1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/126592Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1127/entomologia/2022/1397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Australia, SwitzerlandPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100574 ,ARC| Discovery Projects - Grant ID: DP170100837Authors: Abigail I. Pastore; Janneke HilleRisLambers; Margaret M. Mayfield; Maia L. Raymundo; +1 AuthorsAbigail I. Pastore; Janneke HilleRisLambers; Margaret M. Mayfield; Maia L. Raymundo; Maia L. Raymundo;handle: 11343/310633
Natural ecosystems are threatened by climate change, fragmentation, and non-native species. Dispersal-limitation potentially compounds impacts of these factors on plant diversity, especially in isolated vegetation patches. Changes in climate can impact the phenology of native species in distinct ways from non-natives, potentially resulting in cascading impacts on native communities. Few empirical studies have examined the combined effects of climate change and dispersal limitation on community diversity or phenology. Using a five-year dispersal-restriction experiment in an invaded semi-arid annual plant system in Western Australia, we investigated the interactive effects of dispersal-restriction and inter-annual rainfall variation on community composition, species dominance and seed production timing. We found inter-annual rainfall variation to be the principal driver of community dynamics. Drought years had long-term, stable effects on community composition, with evidence of shifts from native toward non-native dominance. Surprisingly, community composition remained largely unchanged under dispersal restriction. A subtle dispersal rescue effect was evident for a dominant native annual forb and a dominant annual non-native grass but only in average rainfall years. The timing of seed production was primarily driven by annual rainfall with native and non-native grasses having opposite responses. There was no evidence that inter-annual variation in seeding timing affected community diversity over time. Our study demonstrates that dispersal is not a major factor in driving community diversity in this invaded, semi-arid system. Results do suggest, however, that increases in drought frequency likely benefit non-native species over natives in the long term. Climate Change Ecology, 2 ISSN:2666-9005
The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/310633Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecochg.2021.100024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Me... arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/11343/310633Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecochg.2021.100024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Chile, United KingdomPublisher:Proceedings of the National Academy of Sciences Ivan D. Haigh; Marc Rius; Marc Rius; Christopher D. McQuaid; Juan Carlos Castilla; Luciano B. Beheregaray; Jamie Hudson; Peter R. Teske;Significance Species with narrow distributions provide unique opportunities for understanding the mechanisms that limit their spread. We studied a marine invader that exhibits ecological dominance within its range and has the capacity to fundamentally alter the coastal habitat when introduced to new locations. We found evidence of the species’ potential to establish itself far beyond its present introduced range from both genomic data and species distribution modeling. Therefore, minor oceanographic changes (due to, for example, contemporary climate change) or alteration to human-mediated dispersal may trigger a large-scale invasion along vast stretches of coastlines. Our work provides a holistic framework to assess potential changes in the distribution of invasive species.
e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 36visibility views 36 Powered bymore_vert e-Prints Soton arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAProceedings of the National Academy of SciencesArticle . 2021 . Peer-reviewedData sources: CrossrefPontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2022169118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:The Royal Society Authors: Hugh J. Hanmer; Philipp H. Boersch-Supan; Robert A. Robinson;Climate change affects the phenology of annual life cycle events of organisms, such as reproduction and migration. Shifts in the timing of these events could have important population implications directly, or provide information about the mechanisms driving population trajectories, especially if they differ between life cycle event. We examine if such shifts occur in a declining migratory passerine bird (willow warbler, Phylloscopus trochilus ), which exhibits latitudinally diverging population trajectories. We find evidence of phenological shifts in breeding initiation, breeding progression and moult that differ across geographic and spring temperature gradients. Moult initiation following warmer springs advances faster in the south than in the north, resulting in proportionally shorter breeding seasons, reflecting higher nest failure rates in the south and in warmer years. Tracking shifts in multiple life cycle events allowed us to identify points of failure in the breeding cycle in regions where the species has negative population trends, thereby demonstrating the utility of phenology analyses for illuminating mechanistic pathways underlying observed population trajectories.
PubMed Central arrow_drop_down Biology LettersArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2022.0186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert PubMed Central arrow_drop_down Biology LettersArticle . 2022 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsbl.2022.0186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 United Kingdom, Netherlands, United States, Argentina, United States, ArgentinaPublisher:Wiley Funded by:NSERCNSERCOliver Carroll; Evan Batzer; Siddharth Bharath; Elizabeth T. Borer; Sofía Campana; Ellen Esch; Yann Hautier; Timothy Ohlert; Eric W. Seabloom; Peter B. Adler; Jonathan D. Bakker; Lori Biederman; Miguel N. Bugalho; Maria Caldeira; Qingqing Chen; Kendi F. Davies; Philip A. Fay; Johannes M. H. Knops; Kimberly Komatsu; Jason P. Martina; Kevin S. McCann; Joslin L. Moore; John W. Morgan; Taofeek O. Muraina; Brooke Osborne; Anita C. Risch; Carly Stevens; Peter A. Wilfahrt; Laura Yahdjian; Andrew S. MacDougall;AbstractNutrient enrichment can simultaneously increase and destabilise plant biomass production, with co‐limitation by multiple nutrients potentially intensifying these effects. Here, we test how factorial additions of nitrogen (N), phosphorus (P) and potassium with essential nutrients (K+) affect the stability (mean/standard deviation) of aboveground biomass in 34 grasslands over 7 years. Destabilisation with fertilisation was prevalent but was driven by single nutrients, not synergistic nutrient interactions. On average, N‐based treatments increased mean biomass production by 21–51% but increased its standard deviation by 40–68% and so consistently reduced stability. Adding P increased interannual variability and reduced stability without altering mean biomass, while K+ had no general effects. Declines in stability were largest in the most nutrient‐limited grasslands, or where nutrients reduced species richness or intensified species synchrony. We show that nutrients can differentially impact the stability of biomass production, with N and P in particular disproportionately increasing its interannual variability.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Ecology LettersArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefDigital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.13946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Wiley Funded by:UKRI | Standard Approach to atMP...UKRI| Standard Approach to atMP tissue ColLEction (Sample)Authors: Anthony Truong; Matthew Edwards; Jeremy Long;AbstractUnderstory assemblages associated with canopy‐forming species such as trees, kelps, and rockweeds should respond strongly to climate stressors due to strong canopy‐understory interactions. Climate change can directly and indirectly modify these assemblages, particularly during more stressful seasons and climate scenarios. However, fully understanding the seasonal impacts of different climate conditions on canopy‐reliant assemblages is difficult due to a continued emphasis on studying single‐species responses to a single future climate scenario during a single season. To examine these emergent effects, we used mesocosm experiments to expose seaweed assemblages associated with the canopy‐forming golden rockweed, Silvetia compressa, to elevated temperature and pCO2 conditions reflecting two projected greenhouse emission scenarios (RCP 2.6 [low] & RCP 4.5 [moderate]). Assemblages were grown in the presence and absence of Silvetia, and in two seasons. Relative to ambient conditions, predicted climate scenarios generally suppressed Silvetia biomass and photosynthetic efficiency. However, these effects varied seasonally—both future scenarios reduced Silvetia biomass in summer, but only the moderate scenario did so in winter. These reductions shifted the assemblage, with more extreme shifts occurring in summer. Contrarily, future scenarios did not shift assemblages within Silvetia Absent treatments, suggesting that climate primarily affected assemblages indirectly through changes in Silvetia. Mesocosm experiments were coupled with a field Silvetia removal experiment to simulate the effects of climate‐mediated Silvetia loss on natural assemblages. Consistent with the mesocosm experiment, Silvetia loss resulted in season‐specific assemblage shifts, with weaker effects observed in winter. Together, our study supports the hypotheses that climate‐mediated changes to canopy‐forming species can indirectly affect the associated assemblage, and that these effects vary seasonally. Such seasonality is important to consider as it may provide periods of recovery when conditions are less stressful, especially if we can reduce the severity of future climate scenarios.
Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.10947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Ecology and Evolutio... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ece3.10947&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu