- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- Embargo
- AU
- JP
- Energy Research
- Closed Access
- Open Source
- Embargo
- AU
- JP
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Mila Kashcheeva; Kevin K. Tsui;Abstract International politics affects the oil trade. But do financial and commercial traders who participate in spot oil trading also respond to changes in international politics? We construct a firm-level dataset for all U.S. oil-importing companies over 1986–2008 to examine how these firms respond to increases in “political distance” between the U.S. and her trading partners, measured by divergence in their UN General Assembly voting patterns. Consistent with previous macro evidence, we first show that individual firms diversify their oil imports politically, even after controlling for unobserved firm heterogeneity. However, the political pattern of oil imports is not entirely driven by the concerns of hold-up risks, which exist when oil transactions via term contracts are associated with backward vertical FDI that is subject to expropriation. In particular, our results indicate that even financial and commercial traders significantly reduce their oil imports from U.S. political enemies. Interestingly, while these traders diversify their oil imports politically immediately after changes in international politics, other oil companies reduce their oil imports with a significant time lag. Our findings suggest that in designing regulations to avoid harmful repercussions on commodity and financial assets, policymakers need to understand the nature of political risk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Jia Li; Lixun Cheng; Fei Wang; Li Li; Yanming Wang; Song Dai; Yongxing Zhang; Xin-Yao Yu; Xin-Yao Yu;doi: 10.1039/c9se00770a
Mixed transition metal oxides with high theoretical capacity show great potential to replace carbonaceous anode materials in lithium-ion batteries.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Akihiko Matsumoto; Ting Lee; Fei-Yee Yeoh; Farinaa Md Jamil; Zuhana Ahmad Zubir;Thermochemical reactions viz. combustion and pyrolysis are important processes in the conversion of biomass from agricultural wastes into functional materials activated carbon fibre (ACF). Acid treatment during combustion and pyrolysis leaves a major impact which affects quality and properties of the resulting ACF such as pore size control and surface area enlargement. In this study, carbonisation and activation of empty fruit bunch (EFB) fibre into ACF was carried out using acid treatment assisted combustion and pyrolysis followed by CO2 gas flow. The effects of acid treatment on the physicochemical properties and pore characteristics was studied by applying sulphuric acid and switching the sequence of acid treatment before and after combustion and pyrolysis. Intercalation of sulphuric acid and exfoliation reactions on the acid-treated EFB fibre resulted in a higher thermal degradation rate compared to raw EFB fibre without acid treatment. Higher BET surface area and total pore volume were obtained for ACF samples treated with acid. The higher pore volume is due to the intercalated sulphuric compound which facilitated the removal of volatile matter and generated more pores for adsorption. However, severe acid oxidation could also lead to pore blocking with excess oxygen complexes and creation of limited porosity. The results show that properties of the ACF can be affected by the sequence of the acid treatment depending on the thermochemical process applied.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2014.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2014.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Hisashi Kotani; Toshio Yamanaka; Ryuji Satoh;Abstract Light wells in the centers of high-rise apartment buildings in Japan are called ‘Voids’. Gas water-heaters built into Voids discharge exhaust gas so a large enough opening has to be designed at the bottom of a Void to keep the indoor air quality (IAQ) acceptable. In order to secure the IAQ in the Void from contamination, a simple calculation method of the ventilation rate induced by wind force and thermal buoyancy through openings at the bottom, along with heat sources such as water-heaters, is presented. The accuracy of this calculation method was examined by wind tunnel testing. As a result, it turned out that the simple calculation methods introduced in this study were valid for predicting the vertical temperature distribution and ventilation rates in Voids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00166-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00166-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Sungpyo Kim; Eilhan Kwon;This paper presents experimental results of the impact of CO(2) co-feed on a gasification/pyrolysis process for various feedstocks (biomass, coal, and municipal solid waste (MSW)). Various feedstocks were thermo-gravimetrically characterized under various atmospheric conditions and heating rates. A substantial amount of char burn out was identified in the presence of CO(2) via a series of thermo-gravimetric analysis tests, which enabled high conversion of final mass (approximately 99%) to be achieved. The impact of CO(2) co-feed on the volatilization regime during the pyrolysis/gasification process was not apparent at a heating rate of 10-40 degrees C min(-1). However, the impact of CO(2) on the volatilization regime at a fast heating rate (950 degrees C min(-1)) was substantial. For example, significant enhancement in the generation of CO, by a factor of approximately 2, was observed in the presence of CO(2). The generation of major chemical species, such as CH(4) and C(2)H(4), were enhanced, but this was not as apparent as in the case with CO. In addition, introducing CO(2) to the pyrolysis/gasification process enabled the amount of condensable liquid hydrocarbons, such as tar (approximately 30-40%) to be significantly reduced in the presence of CO(2), in that injecting CO(2) into the pyrolysis/gasification process expedites cracking the volatilized chemical species. Experimental work confirmed that biomass and MSW could be feasible and desirable feedstocks for the pyrolysis/gasification process as these feedstocks can be easily treated compared to coal. To extend this understanding to a more practical level, various feedstocks were tested in a tubular reactor and drop tube reactor under various experimental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Korea (Republic of)Publisher:Wiley Amit Kumar Harit; Eui Dae Jung; Jung Min Ha; Jong Hyun Park; Ayushi Tripathi; Young Wook Noh; Myoung Hoon Song; Han Young Woo;pmid: 34846779
Abstractπ‐Conjugated polyelectrolytes (CPEs) have been studied as interlayers on top of a separate hole transport layer (HTL) to improve the wetting, interfacial defect passivation, and crystal growth of perovskites. However, very few CPE‐based HTLs have been reported without rational molecular design as ideal HTLs for perovskite solar cells (PeSCs). In this study, the authors synthesize a triphenylamine‐based anionic CPE (TPAFS‐TMA) as an HTL for p‐i‐n‐type PeSCs. TPAFS‐TMA has appropriate frontier molecular orbital (FMO) levels similar to those of the commonly used poly(bis(4‐phenyl)‐2,4,6‐trimethylphenylamine) (PTAA) HTL. The ionic and semiconducting TPAFS‐TMA shows high compatibility, high transmittance, appropriate FMO energy levels for hole extraction and electron blocking, as well as defect passivating properties, which are confirmed using various optical and electrical analyses. Thus, the PeSC with the TPAFS‐TMA HTL exhibits the best power conversion efficiency (PCE) of 20.86%, which is better than that of the PTAA‐based device (PCE of 19.97%). In addition, it exhibits negligible device‐to‐device variations in its photovoltaic performance, contrary to the device with PTAA. Finally, a large‐area PeSC (1 cm2) and mini‐module (3 cm2), showing PCEs of 19.46% and 18.41%, respectively, are successfully fabricated. The newly synthesized TPAFS‐TMA may suggest its great potential as an HTL for large‐area PeSCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Authors: Truc Nguyen The; T.T. Nguyen; K. Fushinobu;Abstract Gas crossover is an unavoidable phenomenon in proton exchange membrane fuel cells. Gas crossover leads to heat and water generations without conducting any useful works, hence increasing fuel consumption. Particularly, Gas crossover can result in the degradation and formation of pinholes inside the membrane. Therefore, the gas crossover is a critical factor significantly affecting the durability of a fuel cell and quality of the membrane. Herein, we numerically investigate the effects of gas crossover across the membrane in a proton exchange membrane fuel cell. A two-dimensional, two-phase, steady state model of the gas crossover using the partial differential equation solver FreeFem++, was built to investigate the crossover characteristics of hydrogen and oxygen across the membrane versus changes in operating conditions and various geometric structure of components in the proton exchange membrane fuel cell. Results indicated that higher equivalent weight of Nafion® is required to significantly decrease gas crossover phenomenon while the cell performance was reduced negligibly. In addition, as the increase in the stoichiometric flow ratio and channel length, the gas crossover decreased and the cell performance improved.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Shaomin Liu; Hari B. Vuthaluru; Hussein A. Mohammed;Abstract Background Parabolic Trough Solar Collector (PTSC) is one of the most popular and an effective device that converts solar radiation into a heat or useful energy. However, it suffers from high temperature gradient and low thermal efficiency. The solution for this problem is to use new advanced coolants (hybrid nanofluids) in order to enhance PTSC's thermal efficiency. Methods A numerical analysis on the thermo-hydraulic performance of a PTSC receiver's tube equipped with conical turbulators is presented. The Navier-Stokes equations are solved using Finite Volume Method (FVM) coupled with Monte Carlo Ray Tracing (MCRT) method. The flow and thermal characteristics as well as entropy generation of the PTSC's receiver tube are investigated for three hybrid nanofluids (Ag-SWCNT, Ag-MWCNT, and Ag-MgO) having a mixing ratio of (50:50) dispersed in Syltherm oil 800, Reynolds number (5000 to 100,000) and fluid inlet temperatures (400 to 650 K). Significant findings The conical turbulators effectively augmented the thermal performance by 233.4% utilising Ag-SWCNT/Syltherm oil instead of pure Syltherm oil. The performance evaluation criterion is found to be in the range of 0.9–1.82. The thermal and exergetic efficiencies increased by 11.5% and 18.2%, respectively. The maximum decrement in the entropy generation rate and entropy generation ratio are 42.7% and 33.7%.
Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: T. Hoshino; K. Kato; Hitoshi Okubo; Naoki Hayakawa;Partial discharge (PD) measurement using electromagnetic waves by antennas is a promising technique for diagnosing the insulation performance of gas-insulated switchgear (GIS). In order to establish highly sensitive diagnosis techniques of GIS insulation, frequency characteristics of electromagnetic waves, which are determined by GIS apertures such as insulating spacers and bushings, should be clarified. In this paper, we measure the electromagnetic waves radiated from different GIS apertures and also analyze them using the transient analysis program "PSpice." Comparing the measurements with the theoretical analyses, we investigate the relationship between the GIS aperture configuration and the radiated electromagnetic wave spectrum from the aperture. We also discuss how the aperture condition contributes to the radiation characteristics of electromagnetic waves. Finally, we conclude that the electromagnetic waves radiated from the GIS aperture are based on different radiation mechanisms in frequency.
IEEE Power Engineeri... arrow_drop_down IEEE Power Engineering ReviewArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Power DeliveryArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mper.2001.4311485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert IEEE Power Engineeri... arrow_drop_down IEEE Power Engineering ReviewArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Power DeliveryArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mper.2001.4311485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Mila Kashcheeva; Kevin K. Tsui;Abstract International politics affects the oil trade. But do financial and commercial traders who participate in spot oil trading also respond to changes in international politics? We construct a firm-level dataset for all U.S. oil-importing companies over 1986–2008 to examine how these firms respond to increases in “political distance” between the U.S. and her trading partners, measured by divergence in their UN General Assembly voting patterns. Consistent with previous macro evidence, we first show that individual firms diversify their oil imports politically, even after controlling for unobserved firm heterogeneity. However, the political pattern of oil imports is not entirely driven by the concerns of hold-up risks, which exist when oil transactions via term contracts are associated with backward vertical FDI that is subject to expropriation. In particular, our results indicate that even financial and commercial traders significantly reduce their oil imports from U.S. political enemies. Interestingly, while these traders diversify their oil imports politically immediately after changes in international politics, other oil companies reduce their oil imports with a significant time lag. Our findings suggest that in designing regulations to avoid harmful repercussions on commodity and financial assets, policymakers need to understand the nature of political risk.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.02.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Jia Li; Lixun Cheng; Fei Wang; Li Li; Yanming Wang; Song Dai; Yongxing Zhang; Xin-Yao Yu; Xin-Yao Yu;doi: 10.1039/c9se00770a
Mixed transition metal oxides with high theoretical capacity show great potential to replace carbonaceous anode materials in lithium-ion batteries.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00770a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Akihiko Matsumoto; Ting Lee; Fei-Yee Yeoh; Farinaa Md Jamil; Zuhana Ahmad Zubir;Thermochemical reactions viz. combustion and pyrolysis are important processes in the conversion of biomass from agricultural wastes into functional materials activated carbon fibre (ACF). Acid treatment during combustion and pyrolysis leaves a major impact which affects quality and properties of the resulting ACF such as pore size control and surface area enlargement. In this study, carbonisation and activation of empty fruit bunch (EFB) fibre into ACF was carried out using acid treatment assisted combustion and pyrolysis followed by CO2 gas flow. The effects of acid treatment on the physicochemical properties and pore characteristics was studied by applying sulphuric acid and switching the sequence of acid treatment before and after combustion and pyrolysis. Intercalation of sulphuric acid and exfoliation reactions on the acid-treated EFB fibre resulted in a higher thermal degradation rate compared to raw EFB fibre without acid treatment. Higher BET surface area and total pore volume were obtained for ACF samples treated with acid. The higher pore volume is due to the intercalated sulphuric compound which facilitated the removal of volatile matter and generated more pores for adsorption. However, severe acid oxidation could also lead to pore blocking with excess oxygen complexes and creation of limited porosity. The results show that properties of the ACF can be affected by the sequence of the acid treatment depending on the thermochemical process applied.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2014.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2014.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Hisashi Kotani; Toshio Yamanaka; Ryuji Satoh;Abstract Light wells in the centers of high-rise apartment buildings in Japan are called ‘Voids’. Gas water-heaters built into Voids discharge exhaust gas so a large enough opening has to be designed at the bottom of a Void to keep the indoor air quality (IAQ) acceptable. In order to secure the IAQ in the Void from contamination, a simple calculation method of the ventilation rate induced by wind force and thermal buoyancy through openings at the bottom, along with heat sources such as water-heaters, is presented. The accuracy of this calculation method was examined by wind tunnel testing. As a result, it turned out that the simple calculation methods introduced in this study were valid for predicting the vertical temperature distribution and ventilation rates in Voids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00166-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(02)00166-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Sungpyo Kim; Eilhan Kwon;This paper presents experimental results of the impact of CO(2) co-feed on a gasification/pyrolysis process for various feedstocks (biomass, coal, and municipal solid waste (MSW)). Various feedstocks were thermo-gravimetrically characterized under various atmospheric conditions and heating rates. A substantial amount of char burn out was identified in the presence of CO(2) via a series of thermo-gravimetric analysis tests, which enabled high conversion of final mass (approximately 99%) to be achieved. The impact of CO(2) co-feed on the volatilization regime during the pyrolysis/gasification process was not apparent at a heating rate of 10-40 degrees C min(-1). However, the impact of CO(2) on the volatilization regime at a fast heating rate (950 degrees C min(-1)) was substantial. For example, significant enhancement in the generation of CO, by a factor of approximately 2, was observed in the presence of CO(2). The generation of major chemical species, such as CH(4) and C(2)H(4), were enhanced, but this was not as apparent as in the case with CO. In addition, introducing CO(2) to the pyrolysis/gasification process enabled the amount of condensable liquid hydrocarbons, such as tar (approximately 30-40%) to be significantly reduced in the presence of CO(2), in that injecting CO(2) into the pyrolysis/gasification process expedites cracking the volatilized chemical species. Experimental work confirmed that biomass and MSW could be feasible and desirable feedstocks for the pyrolysis/gasification process as these feedstocks can be easily treated compared to coal. To extend this understanding to a more practical level, various feedstocks were tested in a tubular reactor and drop tube reactor under various experimental conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2010.04.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Korea (Republic of)Publisher:Wiley Amit Kumar Harit; Eui Dae Jung; Jung Min Ha; Jong Hyun Park; Ayushi Tripathi; Young Wook Noh; Myoung Hoon Song; Han Young Woo;pmid: 34846779
Abstractπ‐Conjugated polyelectrolytes (CPEs) have been studied as interlayers on top of a separate hole transport layer (HTL) to improve the wetting, interfacial defect passivation, and crystal growth of perovskites. However, very few CPE‐based HTLs have been reported without rational molecular design as ideal HTLs for perovskite solar cells (PeSCs). In this study, the authors synthesize a triphenylamine‐based anionic CPE (TPAFS‐TMA) as an HTL for p‐i‐n‐type PeSCs. TPAFS‐TMA has appropriate frontier molecular orbital (FMO) levels similar to those of the commonly used poly(bis(4‐phenyl)‐2,4,6‐trimethylphenylamine) (PTAA) HTL. The ionic and semiconducting TPAFS‐TMA shows high compatibility, high transmittance, appropriate FMO energy levels for hole extraction and electron blocking, as well as defect passivating properties, which are confirmed using various optical and electrical analyses. Thus, the PeSC with the TPAFS‐TMA HTL exhibits the best power conversion efficiency (PCE) of 20.86%, which is better than that of the PTAA‐based device (PCE of 19.97%). In addition, it exhibits negligible device‐to‐device variations in its photovoltaic performance, contrary to the device with PTAA. Finally, a large‐area PeSC (1 cm2) and mini‐module (3 cm2), showing PCEs of 19.46% and 18.41%, respectively, are successfully fabricated. The newly synthesized TPAFS‐TMA may suggest its great potential as an HTL for large‐area PeSCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/smll.202104933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 JapanPublisher:Elsevier BV Authors: Truc Nguyen The; T.T. Nguyen; K. Fushinobu;Abstract Gas crossover is an unavoidable phenomenon in proton exchange membrane fuel cells. Gas crossover leads to heat and water generations without conducting any useful works, hence increasing fuel consumption. Particularly, Gas crossover can result in the degradation and formation of pinholes inside the membrane. Therefore, the gas crossover is a critical factor significantly affecting the durability of a fuel cell and quality of the membrane. Herein, we numerically investigate the effects of gas crossover across the membrane in a proton exchange membrane fuel cell. A two-dimensional, two-phase, steady state model of the gas crossover using the partial differential equation solver FreeFem++, was built to investigate the crossover characteristics of hydrogen and oxygen across the membrane versus changes in operating conditions and various geometric structure of components in the proton exchange membrane fuel cell. Results indicated that higher equivalent weight of Nafion® is required to significantly decrease gas crossover phenomenon while the cell performance was reduced negligibly. In addition, as the increase in the stoichiometric flow ratio and channel length, the gas crossover decreased and the cell performance improved.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2019.100584&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Shaomin Liu; Hari B. Vuthaluru; Hussein A. Mohammed;Abstract Background Parabolic Trough Solar Collector (PTSC) is one of the most popular and an effective device that converts solar radiation into a heat or useful energy. However, it suffers from high temperature gradient and low thermal efficiency. The solution for this problem is to use new advanced coolants (hybrid nanofluids) in order to enhance PTSC's thermal efficiency. Methods A numerical analysis on the thermo-hydraulic performance of a PTSC receiver's tube equipped with conical turbulators is presented. The Navier-Stokes equations are solved using Finite Volume Method (FVM) coupled with Monte Carlo Ray Tracing (MCRT) method. The flow and thermal characteristics as well as entropy generation of the PTSC's receiver tube are investigated for three hybrid nanofluids (Ag-SWCNT, Ag-MWCNT, and Ag-MgO) having a mixing ratio of (50:50) dispersed in Syltherm oil 800, Reynolds number (5000 to 100,000) and fluid inlet temperatures (400 to 650 K). Significant findings The conical turbulators effectively augmented the thermal performance by 233.4% utilising Ag-SWCNT/Syltherm oil instead of pure Syltherm oil. The performance evaluation criterion is found to be in the range of 0.9–1.82. The thermal and exergetic efficiencies increased by 11.5% and 18.2%, respectively. The maximum decrement in the entropy generation rate and entropy generation ratio are 42.7% and 33.7%.
Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Taiwa... arrow_drop_down Journal of the Taiwan Institute of Chemical EngineersArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtice.2021.06.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: T. Hoshino; K. Kato; Hitoshi Okubo; Naoki Hayakawa;Partial discharge (PD) measurement using electromagnetic waves by antennas is a promising technique for diagnosing the insulation performance of gas-insulated switchgear (GIS). In order to establish highly sensitive diagnosis techniques of GIS insulation, frequency characteristics of electromagnetic waves, which are determined by GIS apertures such as insulating spacers and bushings, should be clarified. In this paper, we measure the electromagnetic waves radiated from different GIS apertures and also analyze them using the transient analysis program "PSpice." Comparing the measurements with the theoretical analyses, we investigate the relationship between the GIS aperture configuration and the radiated electromagnetic wave spectrum from the aperture. We also discuss how the aperture condition contributes to the radiation characteristics of electromagnetic waves. Finally, we conclude that the electromagnetic waves radiated from the GIS aperture are based on different radiation mechanisms in frequency.
IEEE Power Engineeri... arrow_drop_down IEEE Power Engineering ReviewArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Power DeliveryArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mper.2001.4311485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert IEEE Power Engineeri... arrow_drop_down IEEE Power Engineering ReviewArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefIEEE Transactions on Power DeliveryArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/mper.2001.4311485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu