- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOField of Science
Source
- Energy Research
- AU
- RU
- Roskilde University
- Energy Research
- AU
- RU
- Roskilde University
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:The Royal Society Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170100023Thomas H. Holmes; Thomas Wernberg; Thomas Wernberg; Mathew A. Vanderklift; Tim J. Langlois; Salvador Zarco-Perello;The tropicalization of temperate marine ecosystems can lead to increased herbivory rates, reducing the standing stock of seaweeds and potentially causing increases in detritus production. However, long-term studies analysing these processes associated with the persistence of tropical herbivores in temperate reefs are lacking. We assessed the seasonal variation in abundances, macrophyte consumption, feeding modes and defecation rates of the range-extending tropical rabbitfishSiganus fuscescensand the temperate silver drummerKyphosus sydneyanusand herring caleOlisthops cyanomelason tropicalized reefs of Western Australia. Rabbitfish overwintered in temperate reefs, consumed more kelp and other macrophytes in all feeding modes, and defecated more during both summer and winter than the temperate herbivores. Herbivory and defecation increased with rabbitfish abundance, but this was dependent on temperature, with higher rates attained by big schools during summer and lower rates in winter. Still, rabbitfish surpassed temperate herbivores, leading to a fivefold acceleration in the transformation of macrophyte standing stock to detritus, a function usually attributed to sea urchins in kelp forests. Our results suggest that further warming and tropicalization will not only increase primary consumption and affect the habitat structure of temperate reefs but also increase detritus production, with the potential to modify energy pathways.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:American Chemical Society (ACS) Terama, E.; Ollila, O.H.S.; Salonen, E.; Rowat, A.C.; Trandum, C.; Westh, P.; Patra, M.; Karttunen, M.; Vattulainen, I.;doi: 10.1021/jp0750811
pmid: 18341314
We have combined experiments with atomic-scale molecular dynamics simulations to consider the influence of ethanol on a variety of lipid membrane properties. We first employed isothermal titration calorimetry together with the solvent-null method to study the partitioning of ethanol molecules into saturated and unsaturated membrane systems. The results show that ethanol partitioning is considerably more favorable in unsaturated bilayers, which are characterized by their more disordered nature compared to their saturated counterparts. Simulation studies at varying ethanol concentrations propose that the partitioning of ethanol depends on its concentration, implying that the partitioning is a nonideal process. To gain further insight into the permeation of alcohols and their influence on lipid dynamics, we also employed molecular dynamics simulations to quantify kinetic events associated with the permeation of alcohols across a membrane, and to characterize the rotational and lateral diffusion of lipids and alcohols in these systems. The simulation results are in agreement with available experimental data and further show that alcohols have a small but non-vanishing effect on the dynamics of lipids in a membrane. The influence of ethanol on the lateral pressure profile of a lipid bilayer is found to be prominent: ethanol reduces the tension at the membrane-water interface and reduces the peaks in the lateral pressure profile close to the membrane-water interface. The changes in the lateral pressure profile are several hundred atmospheres. This supports the hypothesis that anesthetics may act by changing the lateral pressure profile exerted on proteins embedded in membranes.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp0750811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp0750811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Germany, FrancePublisher:MDPI AG Martha Swamila; Damas Philip; Adam Meshack Akyoo; Julius Manda; Lutengano Mwinuka; Philip J. Smethurst; Stefan Sieber; Anthony Anderson Kimaro;doi: 10.3390/su14010053
handle: 10568/117464
Declining soil fertility and climatic extremes are among major problems for agricultural production in most dryland agro-ecologies of sub-Saharan Africa. In response, the agroforestry technology intercropping of Gliricidia (Gliricidia sepium (Jacq.)) and Maize (Zea mays L.) was developed to complement conventional soil fertility management technologies. However, diversified information on the profitability of Gliricidia-Maize intercropping system in dryland areas is scanty. Using data from the Gliricidia and maize models of the Next Generation version of the Agriculture Production Systems sIMulator (APSIM), this study estimates the profitability of the Gliricidia-Maize system relative to an unfertilized sole maize system. Results show significant heterogeneity in profitability indicators both in absolute and relative economic terms. Aggregated over a 20-year cycle, Gliricidia-Maize intercropping exhibited a higher Net Present Value (NPV = Tsh 19,238,798.43) and Benefit Cost Ratio (BCR = 4.27) than the unfertilized sole maize system. The NPV and BCR of the latter were Tsh 10,934,669.90 and 3.59, respectively. Moreover, the returns to labour per person day in the Gliricidia-Maize system was 1.5 times those of the unfertilized sole maize system. Sensitivity analysis revealed that the profitability of the Gliricidia-Maize system is more negatively affected by the decrease in output prices than the increase in input prices. A 30% decrease in the former leads to a decrease in NPV and BCR by 38% and 30%, respectively. Despite the higher initial costs of the agroforestry establishment, the 30% increase in input prices affects more disproportionally unfertilized sole maize than the Gliricidia-Maize system in absolute economic terms, i.e., 11.1% versus 8.8% decrease in NPV. In relative economic terms, an equal magnitude of change in input prices exerts the same effect on the unfertilized sole maize and the Gliricidia-maize systems. This result implies that the monetary benefits accrued after the first year of agroforestry establishment offset the initial investment costs. The Gliricidia-Maize intercropping technology therefore is profitable with time, and it can contribute to increased household income and food security. Helping farmers to overcome initial investment costs and manage agroforestry technologies well to generate additional benefits is critical for the successful scaling of the Gliricidia-Maize intercropping technology in dryland areas of Dodoma, Tanzania.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117464Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 128 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117464Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Frontiers Media SA Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170100023 ,ARC| Discovery Projects - Grant ID: DP190100058Jessica A. Benthuysen; Thomas Wernberg; Thomas Wernberg; Eric C. J. Oliver; Ke Chen;handle: 1912/25659
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benthuysen, J. A., Oliver, E. C. J., Chen, K., & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Frontiers in Marine Science, 7, (2020): 147, doi:10.3389/fmars.2020.00147. ; Editorial on the Research Topic Advances in Understanding Marine Heatwaves and Their Impacts In recent years, prolonged, extremely warm water events, known as marine heatwaves, have featured prominently around the globe with their disruptive consequences for marine ecosystems. Over the past decade, marine heatwaves have occurred from the open ocean to marginal seas and coastal regions, including the unprecedented 2011 Western Australia marine heatwave (Ningaloo Niño) in the eastern Indian Ocean (e.g., Pearce et al., 2011), the 2012 northwest Atlantic marine heatwave (Chen et al., 2014), the 2012 and 2015 Mediterranean Sea marine heatwaves (Darmaraki et al., 2019), the 2013/14 western South Atlantic (Rodrigues et al., 2019) and 2017 southwestern Atlantic marine heatwave (Manta et al., 2018), the persistent 2014–2016 “Blob” in the North Pacific (Bond et al., 2015; Di Lorenzo and Mantua, 2016), the 2015/16 marine heatwave spanning the southeastern tropical Indian Ocean to the Coral Sea (Benthuysen et al., 2018), and the Tasman Sea marine heatwaves in 2015/16 (Oliver et al., 2017) and 2017/18 (Salinger et al., 2019). These events have set new records for marine heatwave intensity, the temperature anomaly exceeding a climatology, and duration, the sustained period of extreme temperatures. We have witnessed the profound consequences of these thermal disturbances from acute changes to marine life to enduring impacts on species, populations, and communities (Smale et al., 2019). These marine heatwaves have spurred a diversity of research spanning the methodology of identifying and quantifying the events (e.g., Hobday et al., 2016) and their historical trends ...
Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3389/fmars.2020.00147Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3389/fmars.2020.00147Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 DenmarkPublisher:Elsevier BV Jens Denborg; Pengchao Si; Alexei S. Komolov; Alexei S. Komolov; Preben J. Møller; John Mortensen;pmid: 17683733
By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aca.2007.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aca.2007.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, United Kingdom, France, SwitzerlandPublisher:Informa UK Limited Funded by:SNSF | Hydrologic Prediction in ...SNSF| Hydrologic Prediction in Alpine Environments IIAlberto Viglione; G. Di Baldassarre; Demetris Koutsoyiannis; Elena Toth; Zhonghe Pang; Murugesu Sivapalan; Thorsten Wagener; Christophe Cudennec; David A. Post; Bofu Yu; Stanislaus J. Schymanski; Magdalena Rogger; Sally E. Thompson; Günter Blöschl; Matthew R. Hipsey; Y. Huang; Alberto Montanari; Keith Beven; Keith Beven; Lei Ren; Gregory W. Characklis; Hilary McMillan; Ciaran J. Harman; Berit Arheimer; Denis A. Hughes; Veena Srinivasan; Hoshin V. Gupta; Eva Boegh; G. Young; Bettina Schaefli; Bettina Schaefli; Hubert H. G. Savenije; Pierre Hubert; Salvatore Grimaldi; Andreas Schumann; V. Belyaev; V. Belyaev;The new Scientific Decade 2013-2022 of IAHS, entitled Panta RheiEverything Flows, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013-2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes.
Hydrological Science... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2013.809088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 580 citations 580 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hydrological Science... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2013.809088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Public Library of Science (PLoS) Funded by:UKRI | Extreme Climatic Events i..., NSERC, ARC | Discovery Projects - Gran... +3 projectsUKRI| Extreme Climatic Events in the Oceans: Towards a mechanistic understanding of ecosystem impacts and resilience ,NSERC ,ARC| Discovery Projects - Grant ID: DP220100650 ,ARC| Discovery Projects - Grant ID: DP190100058 ,RCN| Kelp industrial production: Potential impacts on coastal ecosystems (KELPPRO) ,UKRI| Structure, connectivity and resilience of an exploited ecosystem: towards sustainable ecosystem-based fisheries managementKaren Filbee-Dexter; Colette J. Feehan; Dan A. Smale; Kira A. Krumhansl; Skye Augustine; Florian de Bettignies; Michael T. Burrows; Jarrett E. K. Byrnes; Jillian Campbell; Dominique Davoult; Kenneth H. Dunton; João N. Franco; Ignacio Garrido; Sean P. Grace; Kasper Hancke; Ladd E. Johnson; Brenda Konar; Pippa J. Moore; Kjell Magnus Norderhaug; Alasdair O’Dell; Morten F. Pedersen; Anne K. Salomon; Isabel Sousa-Pinto; Scott Tiegs; Dara Yiu; Thomas Wernberg;Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:ARC | Dispersal and gene flow i..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Dispersal and gene flow in habitat-forming algae ,ARC| Discovery Projects - Grant ID: DP160100114 ,ARC| Discovery Projects - Grant ID: DP200100201 ,ARC| Future Fellowships - Grant ID: FT110100174Sofie Vranken; Antoine J. P. Minne; Antoine J. P. Minne; Melinda A. Coleman; Melinda A. Coleman; Thomas Wernberg; Thomas Wernberg;AbstractExtreme events are increasing globally with devastating ecological consequences, but the impacts on underlying genetic diversity and structure are often cryptic and poorly understood, hindering assessment of adaptive capacity and ecosystem vulnerability to future change. Using very rare “before” data we empirically demonstrate that an extreme marine heatwave caused a significant poleward shift in genetic clusters of kelp forests whereby alleles characteristic of cool water were replaced by those that predominated in warm water across 200 km of coastline. This “genetic tropicalisation” was facilitated by significant mortality of kelp and other co-occurring seaweeds within the footprint of the heatwave that opened space for rapid local proliferation of surviving kelp genotypes or dispersal and recruitment of spores from warmer waters. Genetic diversity declined and inbreeding increased in the newly tropicalised site, but these metrics were relative stable elsewhere within the footprint of the heatwave. Thus, extreme events such as marine heatwaves not only lead to significant mortality and population loss but can also drive significant genetic change in natural populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-69665-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-69665-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 Australia, Australia, DenmarkPublisher:Elsevier BV Authors: Pedersen, Morten; Staehr, Peter; Wernberg, Thomas; Thomsen, Mads Solgaard;Abstract The expansion of Sargassum muticum in the Danish estuary Limfjorden between 1984 and 1997 was followed by a decrease in abundance of native perennial macroalgae such as Halidrys siliquosa. Although commonly associated with the expansion of exotic species, it is unknown whether such structural changes affect ecosystem properties such as the production and turnover of organic matter and associated nutrients. We hypothesized that S. muticum possesses ‘ephemeral’ traits relative to the species it has replaced, potentially leading to faster and more variable turnover of organic matter. The biomass dynamics of S. muticum and H. siliquosa was therefore compared in order to assess the potential effects of the expansion of Sargassum. The biomass of Sargassum was highly variable among seasons while that of Halidrys remained almost constant over the year. Sargassum grew faster than Halidrys and other perennial algae and the annual productivity was therefore high (P/B = 12 year−1) and exceeded that of Halidrys (P/B = 5 year−1) and most probably also that of other perennial algae in the system. The major grazer on macroalgae in Limfjorden, the sea urchin Psammechinus miliaris, preferred Sargassum to Halidrys, but estimated losses due to grazing were negligible for both species and most of the production may therefore enter the detritus pool. Detritus from Sargassum decomposed faster and more completely than detritus from Halidrys and other slow-growing perennial macrophytes. High productivity and fast decomposition suggest that the increasing dominance of S. muticum have increased turnover of organic matter and associated nutrients in Limfjorden and we suggest that the ecological effects of the invasion to some extent resemble those imposed by increasing dominance of ephemeral algae following eutrophication.
Aquatic Botany arrow_drop_down University of Copenhagen: ResearchArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquabot.2005.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aquatic Botany arrow_drop_down University of Copenhagen: ResearchArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquabot.2005.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, SpainPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Projects - Grant ID: DP190100058 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE190100692Teresa Alcoverro; Teresa Alcoverro; Albert Pessarrodona; Carla A. Narvaez; Karen Filbee-Dexter; Kjell Magnus Norderhaug; Thomas Wernberg; Thomas Wernberg; Sean P. Grace; Stein Fredriksen; Colette J. Feehan; Jordi Boada; Jordi Boada; Yohei Nakamura;AbstractHumans are rapidly transforming the structural configuration of the planet's ecosystems, but these changes and their ecological consequences remain poorly quantified in underwater habitats. Here, we show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the miniaturization of underwater habitat structure, with seascapes converging towards flattened habitats with smaller habitable spaces. Globally, turf seascapes occupied a smaller architectural trait space and were structurally more similar across regions than marine forests, evidencing habitat homogenization. Surprisingly, such habitat convergence occurred despite turf seascapes consisting of vastly different species richness and with different taxa providing habitat architecture, as well as across disparate drivers of marine forest decline. Turf seascapes contained high sediment loads, with the miniaturization of habitat across 100s of km in mid‐Western Australia resulting in reefs retaining an additional ~242 million tons of sediment (four orders of magnitude more than the sediments delivered fluvially annually). Together, this work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:The Royal Society Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170100023Thomas H. Holmes; Thomas Wernberg; Thomas Wernberg; Mathew A. Vanderklift; Tim J. Langlois; Salvador Zarco-Perello;The tropicalization of temperate marine ecosystems can lead to increased herbivory rates, reducing the standing stock of seaweeds and potentially causing increases in detritus production. However, long-term studies analysing these processes associated with the persistence of tropical herbivores in temperate reefs are lacking. We assessed the seasonal variation in abundances, macrophyte consumption, feeding modes and defecation rates of the range-extending tropical rabbitfishSiganus fuscescensand the temperate silver drummerKyphosus sydneyanusand herring caleOlisthops cyanomelason tropicalized reefs of Western Australia. Rabbitfish overwintered in temperate reefs, consumed more kelp and other macrophytes in all feeding modes, and defecated more during both summer and winter than the temperate herbivores. Herbivory and defecation increased with rabbitfish abundance, but this was dependent on temperature, with higher rates attained by big schools during summer and lower rates in winter. Still, rabbitfish surpassed temperate herbivores, leading to a fivefold acceleration in the transformation of macrophyte standing stock to detritus, a function usually attributed to sea urchins in kelp forests. Our results suggest that further warming and tropicalization will not only increase primary consumption and affect the habitat structure of temperate reefs but also increase detritus production, with the potential to modify energy pathways.
Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Proceedings of the R... arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2019.2046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:American Chemical Society (ACS) Terama, E.; Ollila, O.H.S.; Salonen, E.; Rowat, A.C.; Trandum, C.; Westh, P.; Patra, M.; Karttunen, M.; Vattulainen, I.;doi: 10.1021/jp0750811
pmid: 18341314
We have combined experiments with atomic-scale molecular dynamics simulations to consider the influence of ethanol on a variety of lipid membrane properties. We first employed isothermal titration calorimetry together with the solvent-null method to study the partitioning of ethanol molecules into saturated and unsaturated membrane systems. The results show that ethanol partitioning is considerably more favorable in unsaturated bilayers, which are characterized by their more disordered nature compared to their saturated counterparts. Simulation studies at varying ethanol concentrations propose that the partitioning of ethanol depends on its concentration, implying that the partitioning is a nonideal process. To gain further insight into the permeation of alcohols and their influence on lipid dynamics, we also employed molecular dynamics simulations to quantify kinetic events associated with the permeation of alcohols across a membrane, and to characterize the rotational and lateral diffusion of lipids and alcohols in these systems. The simulation results are in agreement with available experimental data and further show that alcohols have a small but non-vanishing effect on the dynamics of lipids in a membrane. The influence of ethanol on the lateral pressure profile of a lipid bilayer is found to be prominent: ethanol reduces the tension at the membrane-water interface and reduces the peaks in the lateral pressure profile close to the membrane-water interface. The changes in the lateral pressure profile are several hundred atmospheres. This supports the hypothesis that anesthetics may act by changing the lateral pressure profile exerted on proteins embedded in membranes.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp0750811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2008Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp0750811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021 Germany, FrancePublisher:MDPI AG Martha Swamila; Damas Philip; Adam Meshack Akyoo; Julius Manda; Lutengano Mwinuka; Philip J. Smethurst; Stefan Sieber; Anthony Anderson Kimaro;doi: 10.3390/su14010053
handle: 10568/117464
Declining soil fertility and climatic extremes are among major problems for agricultural production in most dryland agro-ecologies of sub-Saharan Africa. In response, the agroforestry technology intercropping of Gliricidia (Gliricidia sepium (Jacq.)) and Maize (Zea mays L.) was developed to complement conventional soil fertility management technologies. However, diversified information on the profitability of Gliricidia-Maize intercropping system in dryland areas is scanty. Using data from the Gliricidia and maize models of the Next Generation version of the Agriculture Production Systems sIMulator (APSIM), this study estimates the profitability of the Gliricidia-Maize system relative to an unfertilized sole maize system. Results show significant heterogeneity in profitability indicators both in absolute and relative economic terms. Aggregated over a 20-year cycle, Gliricidia-Maize intercropping exhibited a higher Net Present Value (NPV = Tsh 19,238,798.43) and Benefit Cost Ratio (BCR = 4.27) than the unfertilized sole maize system. The NPV and BCR of the latter were Tsh 10,934,669.90 and 3.59, respectively. Moreover, the returns to labour per person day in the Gliricidia-Maize system was 1.5 times those of the unfertilized sole maize system. Sensitivity analysis revealed that the profitability of the Gliricidia-Maize system is more negatively affected by the decrease in output prices than the increase in input prices. A 30% decrease in the former leads to a decrease in NPV and BCR by 38% and 30%, respectively. Despite the higher initial costs of the agroforestry establishment, the 30% increase in input prices affects more disproportionally unfertilized sole maize than the Gliricidia-Maize system in absolute economic terms, i.e., 11.1% versus 8.8% decrease in NPV. In relative economic terms, an equal magnitude of change in input prices exerts the same effect on the unfertilized sole maize and the Gliricidia-maize systems. This result implies that the monetary benefits accrued after the first year of agroforestry establishment offset the initial investment costs. The Gliricidia-Maize intercropping technology therefore is profitable with time, and it can contribute to increased household income and food security. Helping farmers to overcome initial investment costs and manage agroforestry technologies well to generate additional benefits is critical for the successful scaling of the Gliricidia-Maize intercropping technology in dryland areas of Dodoma, Tanzania.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117464Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 128 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117464Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Frontiers Media SA Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP170100023 ,ARC| Discovery Projects - Grant ID: DP190100058Jessica A. Benthuysen; Thomas Wernberg; Thomas Wernberg; Eric C. J. Oliver; Ke Chen;handle: 1912/25659
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benthuysen, J. A., Oliver, E. C. J., Chen, K., & Wernberg, T. Editorial: advances in understanding marine heatwaves and their impacts. Frontiers in Marine Science, 7, (2020): 147, doi:10.3389/fmars.2020.00147. ; Editorial on the Research Topic Advances in Understanding Marine Heatwaves and Their Impacts In recent years, prolonged, extremely warm water events, known as marine heatwaves, have featured prominently around the globe with their disruptive consequences for marine ecosystems. Over the past decade, marine heatwaves have occurred from the open ocean to marginal seas and coastal regions, including the unprecedented 2011 Western Australia marine heatwave (Ningaloo Niño) in the eastern Indian Ocean (e.g., Pearce et al., 2011), the 2012 northwest Atlantic marine heatwave (Chen et al., 2014), the 2012 and 2015 Mediterranean Sea marine heatwaves (Darmaraki et al., 2019), the 2013/14 western South Atlantic (Rodrigues et al., 2019) and 2017 southwestern Atlantic marine heatwave (Manta et al., 2018), the persistent 2014–2016 “Blob” in the North Pacific (Bond et al., 2015; Di Lorenzo and Mantua, 2016), the 2015/16 marine heatwave spanning the southeastern tropical Indian Ocean to the Coral Sea (Benthuysen et al., 2018), and the Tasman Sea marine heatwaves in 2015/16 (Oliver et al., 2017) and 2017/18 (Salinger et al., 2019). These events have set new records for marine heatwave intensity, the temperature anomaly exceeding a climatology, and duration, the sustained period of extreme temperatures. We have witnessed the profound consequences of these thermal disturbances from acute changes to marine life to enduring impacts on species, populations, and communities (Smale et al., 2019). These marine heatwaves have spurred a diversity of research spanning the methodology of identifying and quantifying the events (e.g., Hobday et al., 2016) and their historical trends ...
Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3389/fmars.2020.00147Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3389/fmars.2020.00147Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.00147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 DenmarkPublisher:Elsevier BV Jens Denborg; Pengchao Si; Alexei S. Komolov; Alexei S. Komolov; Preben J. Møller; John Mortensen;pmid: 17683733
By coating different conducting polymers of thiophene and its derivatives on quartz crystal microbalance (QCM) sensor surfaces, new novel QCM gas sensors have been produced in two simple ways, which could classify testing gas samples of volatile organic compounds (VOCs) gases. Principle components analysis (PCA) has been performed based on the QCM measurement results, which shows that our QCM sensors array has very good utilizing potential on sensing both polar and low-polar/nonpolar VOC gases. The sensitivity, selectivity, reproducibility and detection limit of QCM sensors have also been discussed. Quantitative variation of sensitivity response with the increasing concentration has been studied. (PLS) analysis and prediction of concentrations of single gas in mixtures have been carried out.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aca.2007.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aca.2007.06.050&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, United Kingdom, France, SwitzerlandPublisher:Informa UK Limited Funded by:SNSF | Hydrologic Prediction in ...SNSF| Hydrologic Prediction in Alpine Environments IIAlberto Viglione; G. Di Baldassarre; Demetris Koutsoyiannis; Elena Toth; Zhonghe Pang; Murugesu Sivapalan; Thorsten Wagener; Christophe Cudennec; David A. Post; Bofu Yu; Stanislaus J. Schymanski; Magdalena Rogger; Sally E. Thompson; Günter Blöschl; Matthew R. Hipsey; Y. Huang; Alberto Montanari; Keith Beven; Keith Beven; Lei Ren; Gregory W. Characklis; Hilary McMillan; Ciaran J. Harman; Berit Arheimer; Denis A. Hughes; Veena Srinivasan; Hoshin V. Gupta; Eva Boegh; G. Young; Bettina Schaefli; Bettina Schaefli; Hubert H. G. Savenije; Pierre Hubert; Salvatore Grimaldi; Andreas Schumann; V. Belyaev; V. Belyaev;The new Scientific Decade 2013-2022 of IAHS, entitled Panta RheiEverything Flows, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013-2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes.
Hydrological Science... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2013.809088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 580 citations 580 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Hydrological Science... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverUniversity of Bristol: Bristol ResearchArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/02626667.2013.809088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Public Library of Science (PLoS) Funded by:UKRI | Extreme Climatic Events i..., NSERC, ARC | Discovery Projects - Gran... +3 projectsUKRI| Extreme Climatic Events in the Oceans: Towards a mechanistic understanding of ecosystem impacts and resilience ,NSERC ,ARC| Discovery Projects - Grant ID: DP220100650 ,ARC| Discovery Projects - Grant ID: DP190100058 ,RCN| Kelp industrial production: Potential impacts on coastal ecosystems (KELPPRO) ,UKRI| Structure, connectivity and resilience of an exploited ecosystem: towards sustainable ecosystem-based fisheries managementKaren Filbee-Dexter; Colette J. Feehan; Dan A. Smale; Kira A. Krumhansl; Skye Augustine; Florian de Bettignies; Michael T. Burrows; Jarrett E. K. Byrnes; Jillian Campbell; Dominique Davoult; Kenneth H. Dunton; João N. Franco; Ignacio Garrido; Sean P. Grace; Kasper Hancke; Ladd E. Johnson; Brenda Konar; Pippa J. Moore; Kjell Magnus Norderhaug; Alasdair O’Dell; Morten F. Pedersen; Anne K. Salomon; Isabel Sousa-Pinto; Scott Tiegs; Dara Yiu; Thomas Wernberg;Cycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:ARC | Dispersal and gene flow i..., ARC | Discovery Projects - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Dispersal and gene flow in habitat-forming algae ,ARC| Discovery Projects - Grant ID: DP160100114 ,ARC| Discovery Projects - Grant ID: DP200100201 ,ARC| Future Fellowships - Grant ID: FT110100174Sofie Vranken; Antoine J. P. Minne; Antoine J. P. Minne; Melinda A. Coleman; Melinda A. Coleman; Thomas Wernberg; Thomas Wernberg;AbstractExtreme events are increasing globally with devastating ecological consequences, but the impacts on underlying genetic diversity and structure are often cryptic and poorly understood, hindering assessment of adaptive capacity and ecosystem vulnerability to future change. Using very rare “before” data we empirically demonstrate that an extreme marine heatwave caused a significant poleward shift in genetic clusters of kelp forests whereby alleles characteristic of cool water were replaced by those that predominated in warm water across 200 km of coastline. This “genetic tropicalisation” was facilitated by significant mortality of kelp and other co-occurring seaweeds within the footprint of the heatwave that opened space for rapid local proliferation of surviving kelp genotypes or dispersal and recruitment of spores from warmer waters. Genetic diversity declined and inbreeding increased in the newly tropicalised site, but these metrics were relative stable elsewhere within the footprint of the heatwave. Thus, extreme events such as marine heatwaves not only lead to significant mortality and population loss but can also drive significant genetic change in natural populations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-69665-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-69665-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005 Australia, Australia, DenmarkPublisher:Elsevier BV Authors: Pedersen, Morten; Staehr, Peter; Wernberg, Thomas; Thomsen, Mads Solgaard;Abstract The expansion of Sargassum muticum in the Danish estuary Limfjorden between 1984 and 1997 was followed by a decrease in abundance of native perennial macroalgae such as Halidrys siliquosa. Although commonly associated with the expansion of exotic species, it is unknown whether such structural changes affect ecosystem properties such as the production and turnover of organic matter and associated nutrients. We hypothesized that S. muticum possesses ‘ephemeral’ traits relative to the species it has replaced, potentially leading to faster and more variable turnover of organic matter. The biomass dynamics of S. muticum and H. siliquosa was therefore compared in order to assess the potential effects of the expansion of Sargassum. The biomass of Sargassum was highly variable among seasons while that of Halidrys remained almost constant over the year. Sargassum grew faster than Halidrys and other perennial algae and the annual productivity was therefore high (P/B = 12 year−1) and exceeded that of Halidrys (P/B = 5 year−1) and most probably also that of other perennial algae in the system. The major grazer on macroalgae in Limfjorden, the sea urchin Psammechinus miliaris, preferred Sargassum to Halidrys, but estimated losses due to grazing were negligible for both species and most of the production may therefore enter the detritus pool. Detritus from Sargassum decomposed faster and more completely than detritus from Halidrys and other slow-growing perennial macrophytes. High productivity and fast decomposition suggest that the increasing dominance of S. muticum have increased turnover of organic matter and associated nutrients in Limfjorden and we suggest that the ecological effects of the invasion to some extent resemble those imposed by increasing dominance of ephemeral algae following eutrophication.
Aquatic Botany arrow_drop_down University of Copenhagen: ResearchArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquabot.2005.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aquatic Botany arrow_drop_down University of Copenhagen: ResearchArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)Edith Cowan University (ECU, Australia): Research OnlineArticle . 2005Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.aquabot.2005.05.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, SpainPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Projects - Grant ID: DP190100058 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE190100692Teresa Alcoverro; Teresa Alcoverro; Albert Pessarrodona; Carla A. Narvaez; Karen Filbee-Dexter; Kjell Magnus Norderhaug; Thomas Wernberg; Thomas Wernberg; Sean P. Grace; Stein Fredriksen; Colette J. Feehan; Jordi Boada; Jordi Boada; Yohei Nakamura;AbstractHumans are rapidly transforming the structural configuration of the planet's ecosystems, but these changes and their ecological consequences remain poorly quantified in underwater habitats. Here, we show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the miniaturization of underwater habitat structure, with seascapes converging towards flattened habitats with smaller habitable spaces. Globally, turf seascapes occupied a smaller architectural trait space and were structurally more similar across regions than marine forests, evidencing habitat homogenization. Surprisingly, such habitat convergence occurred despite turf seascapes consisting of vastly different species richness and with different taxa providing habitat architecture, as well as across disparate drivers of marine forest decline. Turf seascapes contained high sediment loads, with the miniaturization of habitat across 100s of km in mid‐Western Australia resulting in reefs retaining an additional ~242 million tons of sediment (four orders of magnitude more than the sediments delivered fluvially annually). Together, this work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu