- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- biological sciences
- AU
- Energy Research
- Open Access
- Restricted
- biological sciences
- AU
description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:MDPI AG Anne Rolton; Lesley Rhodes; Kate S. Hutson; Laura Biessy; Tony Bui; Lincoln MacKenzie; Jane E. Symonds; Kirsty F. Smith;Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.; Rusak, J.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.; Brookes, J.;A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United Kingdom, AustraliaPublisher:Wiley Authors: da Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Portela, Bruno Takeshi Tanaka; +10 Authorsda Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Portela, Bruno Takeshi Tanaka; da Costa, Mauricio; de Athaydes Silva Junior, João; Braga, Alan P.; de Gonçalves, Paulo H. L.; de Oliveira, Alex AR; Fisher, Rosie; Phillips, Oliver L.; Metcalfe, Daniel B.; Levy, Peter; Meir, Patrick;Featured paper: See Editorial p553
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79363Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 287 citations 287 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79363Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustraliaPublisher:Cold Spring Harbor Laboratory Funded by:EC | T-FORCES, UKRI | The multi-year impacts of...EC| T-FORCES ,UKRI| The multi-year impacts of the 2015/2016 El Nino on the carbon cycle of tropical forestsLisa Patrick Bentley; Paul E. Santos-Andrade; Sami W. Rifai; Sami W. Rifai; Sami W. Rifai; Lucas A. Cernusak; Sean M. McMahon; Susan G. Laurance; Michael F. Hutchinson; Imma Oliveras; Oliver L. Phillips; David Bauman; David Bauman; David Bauman; Matt Bradford; Hugo R. Ninantay-Rivera; Jimmy R. Chambi Paucar; Raymond Dempsey; Claire Fortunel; Brandon E. McNellis; Yadvinder Malhi; Guillaume Delhaye; Jesús Aguirre-Gutiérrez; Jesús Aguirre-Gutiérrez;AbstractA better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) and short-term deviations from these averages (anomalies) both influence tree growth, but the rarity of long-term data integrating climatic gradients with tree censuses has so far limited our understanding of their respective role, especially in tropical systems. Here, we combined 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how tree growth responds to both climate means and anomalies, and how species functional traits mediate these tree growth responses to climate. We showed that short-term, anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both long-term and short-term climate variations. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests, and that species traits can be leveraged to understand these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.15982Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03454584Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.06.08.447571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.15982Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03454584Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.06.08.447571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Frontiers Media SA Authors: Rendle, EJ; Hunt, EL; Bicknell, AWJ;handle: 10871/133527
The extent of seabed licensed for offshore renewables is being expanded with the global requirement to reduce carbon emissions. The opportunity for Nature-based Solutions for restoration, conservation, mariculture, infrastructure protection, and carbon sequestration initiatives are being explored internationally. Co-location of marine renewable or structures with conservation initiatives offers the opportunity to support populations of threatened species and contribute to wider ecosystem services and benefits. Building on experience from a North Sea project, we explore the feasibility to co-locate bivalve species at offshore wind farms. We present a three-step approach to identify offshore wind farm sites with the potential to co-locate with compatible species within a marine licensed area, based on environmental and physical conditions and biological tolerances. These steps are, (1) information collection and data synthesis, (2) data analysis through site suitability and species compatibility assessments, and (3) numerical modelling approaches to test the feasibility of pilot studies and scale-up planned operations. This approach supports feasibility assessment by identification of sites where Nature-based Solution project success is more likely or certain, thereby reducing project costs and risk of failure. An example case study is provided using Gunfleet Sands offshore wind farm (southeast England) and the restoration and conservation of the commercially valuable European Flat Oyster (Ostrea edulis).
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.3389/fevo.2023.690382Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2023.690382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.3389/fevo.2023.690382Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2023.690382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC John Paul Cabral; Bidur Kafle; Mahbube Subhani; Johannes Reiner; Mahmud Ashraf;AbstractTimber densification is a process that has been around since the early 1900s and is predominantly used to enhance the structural properties of timber. The process of densification provides the timber with a greater mechanical strength, hardness, abrasion resistance, and dimensional stability in comparison to its virgin counterparts. It alters the cellular structure of the timber through compression, chemical impregnation, or the combination of the two. This in turn closes the voids of the timber or fills the porosity of the cell wall structure, increasing the density of the timber and, therefore, changing its properties. Several processes are reported in literature which produce densified timber, considering the effect of various parameters, such as the compression ratio, and the temperature on the mechanical properties of the densified timber. This paper presents an overview of the current processes of timber densification and its corresponding effects. The material properties of densified timber, applications, and possible future directions are also explored, as the potential of this innovative material is still not fully realised.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s10086-022-02028-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s10086-022-02028-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:PeerJ Corte, Guilherme N; Schlacher, T; Checon, Helio J; Barnoza, Carlos A M; Siegle, Eduardo; Coleman, Ross A; Amaral, Antonia Cecilia Z;Climate change is predicted to lead to more extreme weather events, including changes to storm frequency, intensity and location. Yet the ecological responses to storms are incompletely understood for sandy shorelines, the globe’s longest land-ocean interface. Here we document how storms of different magnitude impacted the invertebrate assemblages on a tidal flat in Brazil. We specifically tested the relationships between wave energy and spatial heterogeneity, both for habitat properties (habitat heterogeneity) and fauna (β-diversity), predicting that larger storms redistribute sediments and hence lead to spatially less variable faunal assemblages. The sediment matrix tended to become less heterogeneous across the flat after high-energy wave events, whereas β-diversity increased after storms. This higher β-diversity was primarily driven by species losses. Significantly fewer species at a significantly lower density occurred within days to weeks after storms. Negative density and biomass responses to storm events were most prominent in crustaceans. Invertebrate assemblages appeared to recover within a short time (weeks to months) after storms, highlighting that most species typical of sedimentary shorelines are, to some degree, resilient to short-term changes in wave energy. Given that storm frequency and intensity are predicted to change in the coming decades, identifying properties that determine resilience and recovery of ecosystems constitute a research priority for sedimentary shorelines and beyond.
PeerJ arrow_drop_down USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.3360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PeerJ arrow_drop_down USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.3360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Authors: Fernando Zaniolo Gibran; Rodrigo L. Moura; Rodrigo L. Moura; Gilberto M. Amado-Filho; +13 AuthorsFernando Zaniolo Gibran; Rodrigo L. Moura; Rodrigo L. Moura; Gilberto M. Amado-Filho; Carolina V. Minte-Vera; Ronaldo B. Francini-Filho; Camilo M. Ferreira; Les Kaufman; Ericka O. C. Coni; Pedro M. Meirelles; Douglas P. Abrantes; Guilherme H. Pereira-Filho; Paulo Y. G. Sumida; Arthur Z. Güth; Fabiano L. Thompson; Alex Cardoso Bastos; Nara L. Oliveira;The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3-10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003-2005 and 2006-2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/2440/97081Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0054260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/2440/97081Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0054260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Authors: Danae Moore; Danae Moore; Michael R. Kearney; Adam J. Stow;Abstract For ectotherms such as lizards, the importance of behavioural thermoregulation in avoiding thermal extremes is well‐established and is increasingly acknowledged in modern studies of climate warming and its impacts. Less appreciated and understood are the buffering roles of retreat sites and activity phase, in part because of logistical challenges of studying below‐ground activity. Burrowing and nocturnal activity are key behavioural adaptations that have enabled a diverse range of reptiles to survive extreme environmental temperatures within hot desert regions. Yet, the direct impact of recent global warming on activity potential has been hypothesised to have caused extinctions in desert lizards, including the Australian arid zone skink Liopholis kintorei. We test the relevance of this hypothesis through a detailed characterisation of the above‐ and below‐ground thermal and hydric microclimates available to, and used by, L. kintorei. We integrate operative temperatures with observed body temperatures to construct daily activity budgets, including the inference of subterranean behaviour. We then assess the likelihood that contemporary and future local extinctions in this species, and those of similar burrowing habits, could be explained by the direct effects of warming on its activity budget and exposure to thermal extremes. We found that L. kintorei spent only 4% of its time active on the surface, primarily at dusk, and that overall potential surface activity will be increased, not restricted, with climate warming. The burrow system provides an exceptional buffer to current and future maximum extremes of temperature (≈40°C reduction from potential surface temperatures), and desiccation (burrows near 100% humidity). Therefore, any climate warming impacts on this species are likely to be indirect. Our findings reflect the general buffering capacity of underground microclimates, therefore, our conclusions for L. kintorei are more generally applicable to nocturnal and crepuscular ectotherms, and highlight the need to consider the buffering properties of retreat sites and activity phase when forecasting climate change impacts.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100733Carissa J. Klein; Nicholas H. Wolff; Alan T. White; Eric A. Treml; Alison Green; Maria Beger; Jennifer McGowan; Hugh P. Possingham; Hugh P. Possingham; Peter J. Mumby;AbstractMultinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 13download downloads 13 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:MDPI AG Anne Rolton; Lesley Rhodes; Kate S. Hutson; Laura Biessy; Tony Bui; Lincoln MacKenzie; Jane E. Symonds; Kirsty F. Smith;Harmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.; Rusak, J.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.; Brookes, J.;A Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United Kingdom, AustraliaPublisher:Wiley Authors: da Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Portela, Bruno Takeshi Tanaka; +10 Authorsda Costa, Antonio Carlos Lola; Galbraith, David; Almeida, Samuel; Portela, Bruno Takeshi Tanaka; da Costa, Mauricio; de Athaydes Silva Junior, João; Braga, Alan P.; de Gonçalves, Paulo H. L.; de Oliveira, Alex AR; Fisher, Rosie; Phillips, Oliver L.; Metcalfe, Daniel B.; Levy, Peter; Meir, Patrick;Featured paper: See Editorial p553
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79363Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 287 citations 287 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/79363Data sources: Bielefeld Academic Search Engine (BASE)New PhytologistArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1469-8137.2010.03309.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, AustraliaPublisher:Cold Spring Harbor Laboratory Funded by:EC | T-FORCES, UKRI | The multi-year impacts of...EC| T-FORCES ,UKRI| The multi-year impacts of the 2015/2016 El Nino on the carbon cycle of tropical forestsLisa Patrick Bentley; Paul E. Santos-Andrade; Sami W. Rifai; Sami W. Rifai; Sami W. Rifai; Lucas A. Cernusak; Sean M. McMahon; Susan G. Laurance; Michael F. Hutchinson; Imma Oliveras; Oliver L. Phillips; David Bauman; David Bauman; David Bauman; Matt Bradford; Hugo R. Ninantay-Rivera; Jimmy R. Chambi Paucar; Raymond Dempsey; Claire Fortunel; Brandon E. McNellis; Yadvinder Malhi; Guillaume Delhaye; Jesús Aguirre-Gutiérrez; Jesús Aguirre-Gutiérrez;AbstractA better understanding of how climate affects growth in tree species is essential for improved predictions of forest dynamics under climate change. Long-term climate averages (mean climate) and short-term deviations from these averages (anomalies) both influence tree growth, but the rarity of long-term data integrating climatic gradients with tree censuses has so far limited our understanding of their respective role, especially in tropical systems. Here, we combined 49 years of growth data for 509 tree species across 23 tropical rainforest plots along a climatic gradient to examine how tree growth responds to both climate means and anomalies, and how species functional traits mediate these tree growth responses to climate. We showed that short-term, anomalous increases in atmospheric evaporative demand and solar radiation consistently reduced tree growth. Drier forests and fast-growing species were more sensitive to water stress anomalies. In addition, species traits related to water use and photosynthesis partly explained differences in growth sensitivity to both long-term and short-term climate variations. Our study demonstrates that both climate means and anomalies shape tree growth in tropical forests, and that species traits can be leveraged to understand these demographic responses to climate change, offering a promising way forward to forecast tropical forest dynamics under different climate trajectories.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.15982Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03454584Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.06.08.447571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.1111/gcb.15982Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Full-Text: https://hal.inrae.fr/hal-03454584Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2021.06.08.447571&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Frontiers Media SA Authors: Rendle, EJ; Hunt, EL; Bicknell, AWJ;handle: 10871/133527
The extent of seabed licensed for offshore renewables is being expanded with the global requirement to reduce carbon emissions. The opportunity for Nature-based Solutions for restoration, conservation, mariculture, infrastructure protection, and carbon sequestration initiatives are being explored internationally. Co-location of marine renewable or structures with conservation initiatives offers the opportunity to support populations of threatened species and contribute to wider ecosystem services and benefits. Building on experience from a North Sea project, we explore the feasibility to co-locate bivalve species at offshore wind farms. We present a three-step approach to identify offshore wind farm sites with the potential to co-locate with compatible species within a marine licensed area, based on environmental and physical conditions and biological tolerances. These steps are, (1) information collection and data synthesis, (2) data analysis through site suitability and species compatibility assessments, and (3) numerical modelling approaches to test the feasibility of pilot studies and scale-up planned operations. This approach supports feasibility assessment by identification of sites where Nature-based Solution project success is more likely or certain, thereby reducing project costs and risk of failure. An example case study is provided using Gunfleet Sands offshore wind farm (southeast England) and the restoration and conservation of the commercially valuable European Flat Oyster (Ostrea edulis).
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.3389/fevo.2023.690382Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2023.690382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.3389/fevo.2023.690382Data sources: Bielefeld Academic Search Engine (BASE)Frontiers in Ecology and EvolutionArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2023.690382&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC John Paul Cabral; Bidur Kafle; Mahbube Subhani; Johannes Reiner; Mahmud Ashraf;AbstractTimber densification is a process that has been around since the early 1900s and is predominantly used to enhance the structural properties of timber. The process of densification provides the timber with a greater mechanical strength, hardness, abrasion resistance, and dimensional stability in comparison to its virgin counterparts. It alters the cellular structure of the timber through compression, chemical impregnation, or the combination of the two. This in turn closes the voids of the timber or fills the porosity of the cell wall structure, increasing the density of the timber and, therefore, changing its properties. Several processes are reported in literature which produce densified timber, considering the effect of various parameters, such as the compression ratio, and the temperature on the mechanical properties of the densified timber. This paper presents an overview of the current processes of timber densification and its corresponding effects. The material properties of densified timber, applications, and possible future directions are also explored, as the potential of this innovative material is still not fully realised.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s10086-022-02028-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s10086-022-02028-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:PeerJ Corte, Guilherme N; Schlacher, T; Checon, Helio J; Barnoza, Carlos A M; Siegle, Eduardo; Coleman, Ross A; Amaral, Antonia Cecilia Z;Climate change is predicted to lead to more extreme weather events, including changes to storm frequency, intensity and location. Yet the ecological responses to storms are incompletely understood for sandy shorelines, the globe’s longest land-ocean interface. Here we document how storms of different magnitude impacted the invertebrate assemblages on a tidal flat in Brazil. We specifically tested the relationships between wave energy and spatial heterogeneity, both for habitat properties (habitat heterogeneity) and fauna (β-diversity), predicting that larger storms redistribute sediments and hence lead to spatially less variable faunal assemblages. The sediment matrix tended to become less heterogeneous across the flat after high-energy wave events, whereas β-diversity increased after storms. This higher β-diversity was primarily driven by species losses. Significantly fewer species at a significantly lower density occurred within days to weeks after storms. Negative density and biomass responses to storm events were most prominent in crustaceans. Invertebrate assemblages appeared to recover within a short time (weeks to months) after storms, highlighting that most species typical of sedimentary shorelines are, to some degree, resilient to short-term changes in wave energy. Given that storm frequency and intensity are predicted to change in the coming decades, identifying properties that determine resilience and recovery of ecosystems constitute a research priority for sedimentary shorelines and beyond.
PeerJ arrow_drop_down USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.3360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert PeerJ arrow_drop_down USC Research Bank research dataArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.3360&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Public Library of Science (PLoS) Authors: Fernando Zaniolo Gibran; Rodrigo L. Moura; Rodrigo L. Moura; Gilberto M. Amado-Filho; +13 AuthorsFernando Zaniolo Gibran; Rodrigo L. Moura; Rodrigo L. Moura; Gilberto M. Amado-Filho; Carolina V. Minte-Vera; Ronaldo B. Francini-Filho; Camilo M. Ferreira; Les Kaufman; Ericka O. C. Coni; Pedro M. Meirelles; Douglas P. Abrantes; Guilherme H. Pereira-Filho; Paulo Y. G. Sumida; Arthur Z. Güth; Fabiano L. Thompson; Alex Cardoso Bastos; Nara L. Oliveira;The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3-10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003-2005 and 2006-2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted.
The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/2440/97081Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0054260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The University of Ad... arrow_drop_down The University of Adelaide: Digital LibraryArticle . 2013License: CC BYFull-Text: http://hdl.handle.net/2440/97081Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0054260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:Wiley Authors: Danae Moore; Danae Moore; Michael R. Kearney; Adam J. Stow;Abstract For ectotherms such as lizards, the importance of behavioural thermoregulation in avoiding thermal extremes is well‐established and is increasingly acknowledged in modern studies of climate warming and its impacts. Less appreciated and understood are the buffering roles of retreat sites and activity phase, in part because of logistical challenges of studying below‐ground activity. Burrowing and nocturnal activity are key behavioural adaptations that have enabled a diverse range of reptiles to survive extreme environmental temperatures within hot desert regions. Yet, the direct impact of recent global warming on activity potential has been hypothesised to have caused extinctions in desert lizards, including the Australian arid zone skink Liopholis kintorei. We test the relevance of this hypothesis through a detailed characterisation of the above‐ and below‐ground thermal and hydric microclimates available to, and used by, L. kintorei. We integrate operative temperatures with observed body temperatures to construct daily activity budgets, including the inference of subterranean behaviour. We then assess the likelihood that contemporary and future local extinctions in this species, and those of similar burrowing habits, could be explained by the direct effects of warming on its activity budget and exposure to thermal extremes. We found that L. kintorei spent only 4% of its time active on the surface, primarily at dusk, and that overall potential surface activity will be increased, not restricted, with climate warming. The burrow system provides an exceptional buffer to current and future maximum extremes of temperature (≈40°C reduction from potential surface temperatures), and desiccation (burrows near 100% humidity). Therefore, any climate warming impacts on this species are likely to be indirect. Our findings reflect the general buffering capacity of underground microclimates, therefore, our conclusions for L. kintorei are more generally applicable to nocturnal and crepuscular ectotherms, and highlight the need to consider the buffering properties of retreat sites and activity phase when forecasting climate change impacts.
Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Animal Ec... arrow_drop_down Journal of Animal EcologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1365-2656.12812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Australia, Australia, United KingdomPublisher:Springer Science and Business Media LLC Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100733Carissa J. Klein; Nicholas H. Wolff; Alan T. White; Eric A. Treml; Alison Green; Maria Beger; Jennifer McGowan; Hugh P. Possingham; Hugh P. Possingham; Peter J. Mumby;AbstractMultinational conservation initiatives that prioritize investment across a region invariably navigate trade-offs among multiple objectives. It seems logical to focus where several objectives can be achieved efficiently, but such multi-objective hotspots may be ecologically inappropriate, or politically inequitable. Here we devise a framework to facilitate a regionally cohesive set of marine-protected areas driven by national preferences and supported by quantitative conservation prioritization analyses, and illustrate it using the Coral Triangle Initiative. We identify areas important for achieving six objectives to address ecosystem representation, threatened fauna, connectivity and climate change. We expose trade-offs between areas that contribute substantially to several objectives and those meeting one or two objectives extremely well. Hence there are two strategies to guide countries choosing to implement regional goals nationally: multi-objective hotspots and complementary sets of single-objective priorities. This novel framework is applicable to any multilateral or global initiative seeking to apply quantitative information in decision making.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 13download downloads 13 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/10044/1/40993Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2015License: CC BYFull-Text: http://hdl.handle.net/11343/115945Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms9208&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu