Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,241 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • Open Source
  • Embargo
  • medical and health sciences
  • AU

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ingo Klimant; Lars Fledelius Rickelt; Marc Staal; orcid Sergey M. Borisov;
    Sergey M. Borisov
    ORCID
    Harvested from ORCID Public Data File

    Sergey M. Borisov in OpenAIRE
    +2 Authors

    New transparent optodes for life-time based microscopic imaging of O₂ were developed by spin-coating a μm-thin layer of a highly luminescent cyclometalated iridium(III) coumarin complex in polystyrene onto glass cover slips. Compared to similar thin-film O₂ optodes based on a ruthenium(II) polypyridyl complex or a platinum(II) porphyrin, the new planar sensors have i) higher brightness allowing for much shorter exposure times and thus higher time resolution, ii) more homogeneous and smaller pixel to pixel variation over the sensor area resulting in less noisy O₂ images, and iii) a lower temperature dependency simplifying calibration procedures. We used the new optodes for microscopic imaging of the spatio-temporal O₂ dynamics at the base of heterotrophic biofilms in combination with confocal imaging of bacterial biomass and biofilm structure. This allowed us to directly link biomass distribution to O₂ distribution under both steady state and non-steady state conditions. We demonstrate that the O₂ dynamics in biofilms is governed by a complex interaction between biomass distribution, mass transfer and flow that cannot be directly inferred from structural information on biomass distribution alone.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Microbiol...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Microbiological Methods
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Microbiol...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Microbiological Methods
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Raymond S. Norton; William J. O'Sullivan; Michael R. Edwards; Frances V. Gilroy;

    Proton nuclear magnetic resonance (NMR) spectroscopy was used to follow glucose metabolism in Crithidia luciliae. Parasites were grown aerobically and anaerobically in culture, with glucose as the major carbon source and 1H NMR spectra were acquired for the cell free medium. The 1H NMR resonances of metabolites utilised and produced during cell growth were identified by difference spectroscopy, and quantitated from standard curves using 3-trimethylsilyl propionate-2,2,3,3-d4 sodium salt as an internal standard. The major metabolites produced by C. luciliae grown aerobically on 8 mM glucose were succinate, pyruvate, acetate and ethanol, in final concentrations in the media when the cells entered stationary phase of 8.5 +/- 0.5, 5.0 +/- 0.3, 2.1 +/- 0.2 and 2.5 +/- 0.6 mM, respectively. The production of succinate and pyruvate, but not acetate and ethanol, followed closely the growth curve of the parasites. Succinate was also measured enzymically and glucose using an autoanalyser. In both cases the results correlated well with the NMR data. The amounts of end products formed were greater than could be accounted for by the utilisation of glucose or any other metabolite observable in the 1H NMR spectra. There was approximately one extra atom of carbon for each molecule of succinate formed, supporting the view that succinate is produced via phosphoenolpyruvate carboxykinase and carbon dioxide fixation. Anaerobically the same major metabolites were produced, but with a decreased ratio of succinate to acetate and ethanol. The formation of glycerol from glucose was not observed under these conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Bioche...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Molecular and Biochemical Parasitology
    Article . 1988 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    40
    citations40
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Bioche...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Molecular and Biochemical Parasitology
      Article . 1988 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tingting Liu; Bingyin Peng; Shuangcheng Huang; orcid Anli Geng;
    Anli Geng
    ORCID
    Harvested from ORCID Public Data File

    Anli Geng in OpenAIRE

    Abstract New exogenous cis,cis-muconic acid biosynthetic pathway genes were expressed in Saccharomyces cerevisiae. The xylose isomerase gene from Bacteroides valgutus and pentose phosphate pathway genes from S. cerevisiae were overexpressed in the yeast strain. The strain was further modified by the overexpression of gene Aro1 (with a stop codon of AroE) and a feedback-resistant Aro4opt mutant gene from S. cerevisiae. Under oxygen-limited conditions, it produced 65 mg/L cis,cis-muconic acid from xylose. Co-fermentation of 88 g/L glucose and 50 g/L xylose generated 54 g/L ethanol and 248 mg/L cis,cis-muconic acid. Under aerobic conditions, muconic acid titer reached 424 mg/L. With the supplement of 1 g/L catechol, 1286 mg/L muconic acid was produced. Fermentation of an oil palm empty fruit bunch hydrolysate resulted in 31.3 g/L ethanol and 53.4 mg/L muconic acid. This is the first report on the production of muconic acid from lignocellulosic biomass hydrolysate using a recombinant xylose-fermenting yeast.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology Reports
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology Reports
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Paul J. Beggs;
    Paul J. Beggs
    ORCID
    Harvested from ORCID Public Data File

    Paul J. Beggs in OpenAIRE
    orcid Ying Zhang;
    Ying Zhang
    ORCID
    Harvested from ORCID Public Data File

    Ying Zhang in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Medical Journal ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Medical Journal of Australia
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Medical Journal ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Medical Journal of Australia
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Junni Wei; orcid Ying Zhang;
    Ying Zhang
    ORCID
    Harvested from ORCID Public Data File

    Ying Zhang in OpenAIRE
    orcid Peng Bi;
    Peng Bi
    ORCID
    Harvested from ORCID Public Data File

    Peng Bi in OpenAIRE
    Yehuan Sun; +4 Authors

    A better understanding of public perceptions, attitude and behavior in relation to climate change will provide an important foundation for government׳s policy-making, service provider׳s guideline development and the engagement of local communities. The purpose of this study was to assess the perception towards climate change, behavior change, mitigation and adaptation measures issued by the central government among the health professionals in the Centres for Disease Control and Prevention (CDC) in China.In 2013, a cross-sectional questionnaire survey was undertaken among 314 CDC health professionals in various levels of CDC in Shanxi Province, China. Descriptive analyses were performed.More than two thirds of the respondents believed that climate change has happened at both global and local levels, and climate change would lead to adverse impacts to human beings. Most respondents (74.8%) indicated the emission of greenhouse gases was the cause of climate change, however there was a lack of knowledge about greenhouse gases and their sources. Media was the main source from which respondents obtained the information about climate change. A majority of respondents showed that they were willing to change behavior, but their actions were limited. In terms of mitigation and adaptation measures issued by the Chinese Government, respondents׳ perception showed inconsistency between strategies and relevant actions. Moreover, although the majority of respondents believed some strategies and measures were extremely important to address climate change, they were still concerned about economic development, energy security, and local environmental protection.There are gaps between perceptions and actions towards climate change among these health professionals. Further efforts need to be made to raise the awareness of climate change among health professionals, and to promote relevant actions to address climate change in the context of the proposed policies with local sustainable development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Research
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    67
    citations67
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Resear...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Research
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bin Zhou; Gregory J.O. Martin; N. B. Pamment;

    AbstractThe recombinant Escherichia coli B strain KO11, containing chromosomally‐integrated genes for ethanol production, was developed for use in lignocellulose‐to‐ethanol bioconversion processes but suffers from instability in continuous culture and a low ethanol tolerance compared to yeast. Here we report the ability cell immobilization to improve its phenotypic stability and ethanol tolerance during continuous culture on a 50 g/L xylose feed. Experiments conducted in a vertical tubular fermentor operated as a liquid‐fluidized bed with the cells immobilized on porous glass microspheres were compared to control experiments in the same reactor operated as a chemostat without the support particles. Without cell immobilization the ethanol yield fell sharply following start‐up, declining to 60% of theoretical after only 8–9 days of continuous fermentation. While immobilizing the cells did not prevent this decline, it delayed its onset and slowed its rate. With immobilization, a stable high ethanol yield (>85%) was maintained for at least 10 days, thereafter declining slowly, but remaining above 70% even after up to 40 days of fermentation. The ethanol tolerance of E. coli KO11 cells was substantially increased by immobilization on the glass microspheres. In ethanol tolerance tests, immobilized cells released from the microspheres had survival rates 2.3‐ to 15‐fold higher than those of free cells isolated from the same broth. Immobilization is concluded to be an effective means of increasing ethanol tolerance in E. coli KO11. While immobilization was only partially effective in combating its phenotypic instability, further improvements can be expected following optimization of the immobilization conditions. Biotechnol. Bioeng. 2008;100: 627–633. © 2008 Wiley Periodicals, Inc.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotechnology and Bi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biotechnology and Bioengineering
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    33
    citations33
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotechnology and Bi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biotechnology and Bioengineering
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Sam McBride; Helen L. Berry; orcid Susanna Every-Palmer;
    Susanna Every-Palmer
    ORCID
    Harvested from ORCID Public Data File

    Susanna Every-Palmer in OpenAIRE
    orcid David B Menkes;
    David B Menkes
    ORCID
    Harvested from ORCID Public Data File

    David B Menkes in OpenAIRE
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australian & New Zea...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    17
    citations17
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australian & New Zea...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Tegan E. Van Gemert;
    Tegan E. Van Gemert
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Tegan E. Van Gemert in OpenAIRE
    orcid bw Robert G. Moses;
    Robert G. Moses
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Robert G. Moses in OpenAIRE
    Kelly Lambert;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australian and New Z...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Australian and New Zealand Journal of Obstetrics and Gynaecology
    Article . 2021 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australian and New Z...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Australian and New Zealand Journal of Obstetrics and Gynaecology
      Article . 2021 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Donna Brown; David Pierson; orcid Mariko Saito;
    Mariko Saito
    ORCID
    Harvested from ORCID Public Data File

    Mariko Saito in OpenAIRE
    Andrea Balla; +6 Authors

    Ethanol preference, a component of alcoholism, has been known for four decades to differ greatly between C57BL/6 and BALB/c inbred mouse strains. For mapping quantitative trait loci (QTLs) that affect ethanol preference, we used a set of B6.C Recombinant QTL Introgression (RQI) strains, which carry about 5% of the donor BALB/cJ (C) genome on a C57BL/6ByJ (B6) background. After characterizing males of the progenitor and RQI strains for variations in ethanol preference, we scanned their genome for polymorphisms at 244 dinucleotide-repeat marker loci known to differ between B6 and C. Because of the introgression of BALB/c-type QTLs onto the B6 background, some strains showed ethanol preference significantly lower or higher than that of the background strain, suggesting that genetic interaction between ethanol preference QTLs and the background can be operative. The genomic region showing the strongest influence on ethanol preference was on mouse chromosome 15, and corresponds to human chr.12q11-q13.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alcohol
    Article . 2000 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Alcohol
    Article . 2000
    addClaim
    29
    citations29
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alcoholarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alcohol
      Article . 2000 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Alcohol
      Article . 2000
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kokavec, A.; orcid Crowe, S. F.;
    Crowe, S. F.
    ORCID
    Harvested from ORCID Public Data File

    Crowe, S. F. in OpenAIRE

    The consumption of alcohol prior to food intake results in alcohol metabolism occurring in the liver, and the liver is often damaged in chronic alcoholics. This paper highlights the possibility that alcohol consumption in the absence of adequate nutrition after an extended period of time may lead to activation of the glyoxylate cycle, an energy pathway associated with the conversion of fat into carbohydrate which until recently was thought to only exist in plants and bacteria.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Hypothesesarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Medical Hypotheses
    Article . 2002 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Hypothesesarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Medical Hypotheses
      Article . 2002 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph