- home
- Advanced Search
- Energy Research
- AU
- Energy Research
- AU
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jing Zhang;
Luqin Fan; Ying Zhang; Gang Yao; Peijia Yu; Guojiang Xiong;Jing Zhang
Jing Zhang in OpenAIREKe Meng;
Xiangping Chen; Zhaoyang Dong;Voltage stability has always been one of the most important concerns. As the increasing integration of large-scale renewable energy sources in power systems, the correlation between load demands and renewable energy systems becomes more and more complex and important for probabilistic voltage stability. There are two significant issues for probabilistic voltage stability assessment: (i) how to choose the reasonable power increment direction which determines the reliability of voltage stability assessment when considering the actual operating characteristics of the power system; and (ii) how to obtain the samples characterized with the specified distribution and the desired correlation. We propose methodologies to define the reasonable power increment direction with theoretical proof. Moreover, power method transformation combined with Latin hypercube sampling and twice-permutation technique is proposed for probabilistic voltage stability assessment. Case studies with two modified IEEE test systems show that the proposed method is accurate and efficient.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2963280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2019.2963280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu