- home
- Advanced Search
Filters
Clear All- Energy Research
- 13. Climate action
- 15. Life on land
- 2. Zero hunger
- AU
- UNSW Sydney
- Energy Research
- 13. Climate action
- 15. Life on land
- 2. Zero hunger
- AU
- UNSW Sydney
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes; Serina Ahlgren; Pål Börjesson; Annette L. Cowie;doi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes; Serina Ahlgren; Pål Börjesson; Annette L. Cowie;doi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2020 AustraliaPublisher:UNSW Sydney Authors: Avgoustinos, Constantine;handle: 1959.4/65521
Climate change poses a serious threat to the long-term structural integrity, if not existence, of the Australian constitutional system. This means that Australian government action worsening climate change poses a threat to this constitutional system. When government action threatens this system, even in a partial or incremental manner, the High Court may derive implications from the Commonwealth Constitution (‘Constitution’) to restrain such action. This is the reasoning underpinning the Court’s establishment of implied limitations such as the Melbourne Corporation and political communication limitations. Based on this reasoning, I explore in this thesis whether a doctrinal argument can be made for deriving a new implication from the Constitution that I refer to as the ‘ecological limitation’. This limitation, if established, would restrain some forms of Commonwealth or State legislative and executive action worsening climate change in the interests of preserving the Australian constitutional system. My methodology for assessing the doctrinal merits of this proposed implication is framed by the High Court’s ‘text and structure approach’ articulated in Lange v Australian Broadcasting Corporation (1997) 189 CLR 520. This interpretive approach requires implications to be derived from the text and structure of the Constitution. I supplement this approach by drawing comparisons between the ecological limitation and established implications to gain further insights on what aspects of a proposed implication may be deemed acceptable and unacceptable by the Court. Finally, I tease out the operation of the ecological limitation by considering its hypothetical application in relation to a real occurrence. Namely, I consider how the limitation might apply to restrain Queensland government approval of a proposed coal mine – the Carmichael mine currently being pursued by Adani Mining Pty Ltd. By following this methodology, I arrive at the doctrinal argument for deriving the ecological limitation outlined above and assess the doctrinal arguments against its derivation that might be raised in response (such as concerns regarding the political decision-making judges would have to engage in if the limitation is established). I conclude that a compelling doctrinal case can be made in support of the ecological limitation that can withstand these counter-arguments.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2020 AustraliaPublisher:UNSW Sydney Authors: Avgoustinos, Constantine;handle: 1959.4/65521
Climate change poses a serious threat to the long-term structural integrity, if not existence, of the Australian constitutional system. This means that Australian government action worsening climate change poses a threat to this constitutional system. When government action threatens this system, even in a partial or incremental manner, the High Court may derive implications from the Commonwealth Constitution (‘Constitution’) to restrain such action. This is the reasoning underpinning the Court’s establishment of implied limitations such as the Melbourne Corporation and political communication limitations. Based on this reasoning, I explore in this thesis whether a doctrinal argument can be made for deriving a new implication from the Constitution that I refer to as the ‘ecological limitation’. This limitation, if established, would restrain some forms of Commonwealth or State legislative and executive action worsening climate change in the interests of preserving the Australian constitutional system. My methodology for assessing the doctrinal merits of this proposed implication is framed by the High Court’s ‘text and structure approach’ articulated in Lange v Australian Broadcasting Corporation (1997) 189 CLR 520. This interpretive approach requires implications to be derived from the text and structure of the Constitution. I supplement this approach by drawing comparisons between the ecological limitation and established implications to gain further insights on what aspects of a proposed implication may be deemed acceptable and unacceptable by the Court. Finally, I tease out the operation of the ecological limitation by considering its hypothetical application in relation to a real occurrence. Namely, I consider how the limitation might apply to restrain Queensland government approval of a proposed coal mine – the Carmichael mine currently being pursued by Adani Mining Pty Ltd. By following this methodology, I arrive at the doctrinal argument for deriving the ecological limitation outlined above and assess the doctrinal arguments against its derivation that might be raised in response (such as concerns regarding the political decision-making judges would have to engage in if the limitation is established). I conclude that a compelling doctrinal case can be made in support of the ecological limitation that can withstand these counter-arguments.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Zheng, Cheng;handle: 1959.4/59620
Nearly 50% of global energy consumption is associated with meeting thermal requirements. Whilst some of this is heat goes to low temperature applications like hot water supply, there is also a huge demand for the supply of 100-250oC thermal energy for industrial and commercial applications which is currently met by gas and electricity. However, using innovative optical and thermal technologies, it can also (potentially) be met by concentrated sunlight from urban rooftop collectors, eliminating billions of kg of CO2 emissions per year. Hence, it may be possible to develop new, advanced collectors to substantially increase the amount of commercial rooftop solar energy harvesting. At present, though, there are still some barriers to overcome to successfully collect large scale of 100-250oC thermal energy from rooftops. One key barrier for most concentrated solar systems is that integration with rooftops is relatively complex and cumbersome in comparison with photovoltaic (PV) panels. This requires a new type of concentrator which is efficient, low-cost and has a low-wind/aesthetic profile. These criteria point to thin concentrators that can be rack-mounted or laid flat on the roof with minimal balance of system requirements. The system should have similar geometrical features and appearance to PV panels and non-concentrating solar hot water collection panels, which are by far the most widely deployed solar collection systems to date. Such a concentrating collector has yet to be demonstrated. As such, this study aims to advancing rooftop solar concentrating technology for commercial and industrial applications via the development of thin optical elements which avoid rotational tracking. During the course of the research, several innovative low-profile optical concentrators (<15cm in height) were designed, developed and systematically investigated to demonstrate their potential to deliver heat energy in the 100-250oC range. A series of experiments were conducted to validate these compact optical concentrator concepts and to demonstrate their performance as semi-passive, internal tracking and concentrating. An economic analysis was also performed to evaluate the feasibility of the final, optimized design proposed in this thesis. Overall, this study offers new optical platforms to advance the utilization of solar energy in urban areas.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Zheng, Cheng;handle: 1959.4/59620
Nearly 50% of global energy consumption is associated with meeting thermal requirements. Whilst some of this is heat goes to low temperature applications like hot water supply, there is also a huge demand for the supply of 100-250oC thermal energy for industrial and commercial applications which is currently met by gas and electricity. However, using innovative optical and thermal technologies, it can also (potentially) be met by concentrated sunlight from urban rooftop collectors, eliminating billions of kg of CO2 emissions per year. Hence, it may be possible to develop new, advanced collectors to substantially increase the amount of commercial rooftop solar energy harvesting. At present, though, there are still some barriers to overcome to successfully collect large scale of 100-250oC thermal energy from rooftops. One key barrier for most concentrated solar systems is that integration with rooftops is relatively complex and cumbersome in comparison with photovoltaic (PV) panels. This requires a new type of concentrator which is efficient, low-cost and has a low-wind/aesthetic profile. These criteria point to thin concentrators that can be rack-mounted or laid flat on the roof with minimal balance of system requirements. The system should have similar geometrical features and appearance to PV panels and non-concentrating solar hot water collection panels, which are by far the most widely deployed solar collection systems to date. Such a concentrating collector has yet to be demonstrated. As such, this study aims to advancing rooftop solar concentrating technology for commercial and industrial applications via the development of thin optical elements which avoid rotational tracking. During the course of the research, several innovative low-profile optical concentrators (<15cm in height) were designed, developed and systematically investigated to demonstrate their potential to deliver heat energy in the 100-250oC range. A series of experiments were conducted to validate these compact optical concentrator concepts and to demonstrate their performance as semi-passive, internal tracking and concentrating. An economic analysis was also performed to evaluate the feasibility of the final, optimized design proposed in this thesis. Overall, this study offers new optical platforms to advance the utilization of solar energy in urban areas.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2011 AustraliaPublisher:UNSW Sydney Authors: Guglyuvatyy, Evgeny;handle: 1959.4/50409
The primary question explored by this thesis is what alternative, carbon tax or emissions trading, would be an optimal policy for climate change mitigation in Australia. This thesis focuses on assessing carbon tax and emissions trading policy options on the basis of multiple criteria related to climate change policy in the Australian context. The study analyses the issues of environmental degradation, policy responses to the climate change issue, carbon taxation and emissions trading as a theoretical foundation for addressing the research question. The weaknesses of common evaluation methods and practices in dealing with climate change policy are also critiqued. After reviewing policy evaluation methods, the study builds a methodological framework to assess the climate change policy options based on the multi-criteria and Delphi methods. To facilitate the evaluation procedure, the criteria necessary for the climate change policy evaluation are identified. This study employs the Delphi method to verify the evaluation criteria in the Australian context and to assess the relative importance of these criteria. The thesis also attempts to construct carbon tax and emissions trading policies for Australia using a combination of theoretical and practical considerations. Further, these two contrasting policies are qualitatively analysed with reference to the identified criteria to assess potential performance of the proposed carbon tax and emissions trading. The resultant evaluation criteria and performance ranks of each proposed policy option allows building a decision matrix which facilitates the final evaluation and selection of an optimal policy. The evaluation results reveal that the carbon tax policy constructed by this study outperforms the designed emissions trading in terms of many criteria. As a result, the carbon tax is identified as an optimal climate change mitigation policy for Australia. The results of this study also indicate that the emissions trading proposed by the Australian Government might be a misleading policy founded on biased assumptions. Based on these findings it is recommended that Australia reconsider carbon tax and emissions trading policies on the basis of well developed multiple criteria to obtain a justified and sustained policy solution.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2011 AustraliaPublisher:UNSW Sydney Authors: Guglyuvatyy, Evgeny;handle: 1959.4/50409
The primary question explored by this thesis is what alternative, carbon tax or emissions trading, would be an optimal policy for climate change mitigation in Australia. This thesis focuses on assessing carbon tax and emissions trading policy options on the basis of multiple criteria related to climate change policy in the Australian context. The study analyses the issues of environmental degradation, policy responses to the climate change issue, carbon taxation and emissions trading as a theoretical foundation for addressing the research question. The weaknesses of common evaluation methods and practices in dealing with climate change policy are also critiqued. After reviewing policy evaluation methods, the study builds a methodological framework to assess the climate change policy options based on the multi-criteria and Delphi methods. To facilitate the evaluation procedure, the criteria necessary for the climate change policy evaluation are identified. This study employs the Delphi method to verify the evaluation criteria in the Australian context and to assess the relative importance of these criteria. The thesis also attempts to construct carbon tax and emissions trading policies for Australia using a combination of theoretical and practical considerations. Further, these two contrasting policies are qualitatively analysed with reference to the identified criteria to assess potential performance of the proposed carbon tax and emissions trading. The resultant evaluation criteria and performance ranks of each proposed policy option allows building a decision matrix which facilitates the final evaluation and selection of an optimal policy. The evaluation results reveal that the carbon tax policy constructed by this study outperforms the designed emissions trading in terms of many criteria. As a result, the carbon tax is identified as an optimal climate change mitigation policy for Australia. The results of this study also indicate that the emissions trading proposed by the Australian Government might be a misleading policy founded on biased assumptions. Based on these findings it is recommended that Australia reconsider carbon tax and emissions trading policies on the basis of well developed multiple criteria to obtain a justified and sustained policy solution.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Industrial Transformation..., ARC | ARC Future Fellowships - ...ARC| Industrial Transformation Training Centres - Grant ID: IC200100023 ,ARC| ARC Future Fellowships - Grant ID: FT190100361Authors: Xiaobing Yu; Yansong Shen; Zhongjie Hu;Abstract Hydrogen, as a carbon-free fuel and reducing agent, has the potential to mitigate carbon dioxide emission in BF ironmaking and the shaft injection is one of the promising and feasible processes; however, its effects on non-renewable fossil fuels saving in ironmaking process and the in-furnace phenomena are still not clear. In this study, a multi-fluid BF model is adopted to study hydrogen shaft injection's influence on in-furnace phenomena and BF performance, including flow-thermal-chemical behaviors and fossil fuel rate saving. The computational domain includes the industrial-scale BF regions from the slag surface in the hearth to the stock line near the furnace top, and the study is carried out under a fixed bosh gas flow rate. The simulation results show that compared with regular BF operation, hydrogen shaft injection can considerably affect BF performance, including the gas flow field, thermal field, and reduction behaviors. It is found that, as the injection rate increases, the penetration depth of hydrogen shows an increasing trend; the apex of cohesive zone shifts to a higher position with a more concave-shaped profile; moreover, both the reduction degree of iron oxides and thermal conditions in the shaft can be improved, which are accompanied with a significantly decreased fossil fuel rate. This study provides a quantitative tool to understand and optimize the hydrogen shaft injection into BFs towards a low-carbon ironmaking process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Industrial Transformation..., ARC | ARC Future Fellowships - ...ARC| Industrial Transformation Training Centres - Grant ID: IC200100023 ,ARC| ARC Future Fellowships - Grant ID: FT190100361Authors: Xiaobing Yu; Yansong Shen; Zhongjie Hu;Abstract Hydrogen, as a carbon-free fuel and reducing agent, has the potential to mitigate carbon dioxide emission in BF ironmaking and the shaft injection is one of the promising and feasible processes; however, its effects on non-renewable fossil fuels saving in ironmaking process and the in-furnace phenomena are still not clear. In this study, a multi-fluid BF model is adopted to study hydrogen shaft injection's influence on in-furnace phenomena and BF performance, including flow-thermal-chemical behaviors and fossil fuel rate saving. The computational domain includes the industrial-scale BF regions from the slag surface in the hearth to the stock line near the furnace top, and the study is carried out under a fixed bosh gas flow rate. The simulation results show that compared with regular BF operation, hydrogen shaft injection can considerably affect BF performance, including the gas flow field, thermal field, and reduction behaviors. It is found that, as the injection rate increases, the penetration depth of hydrogen shows an increasing trend; the apex of cohesive zone shifts to a higher position with a more concave-shaped profile; moreover, both the reduction degree of iron oxides and thermal conditions in the shaft can be improved, which are accompanied with a significantly decreased fossil fuel rate. This study provides a quantitative tool to understand and optimize the hydrogen shaft injection into BFs towards a low-carbon ironmaking process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2019 AustraliaPublisher:UNSW Sydney Authors: Karim, Sardar;handle: 1959.4/62960
Climate change is undeniably the most urgent issue facing humanity. While the Paris Climate Agreement made progress in bringing about international collaboration, for Australia, outcomes at the national level remain uncertain. Nevertheless, the growing involvement of local governments in climate action is encouraging. Not only are the impacts most keenly experienced at this level, there is greater opportunity for control. This is particularly so as a range of non-climate-related co-benefits of climate change mitigation are available at this level. These co-benefits motivate governments to frame climate change mitigation in a positive light to operationalise broader economic, social, health and environmental benefits of low-carbon policies within the concept of sustainable development. Despite substantial evidence for co-benefits, their policy impact remains limited and under-developed. This thesis investigates local governments’ understandings of the ‘co-benefits approach’ in planning for climate change. It provides a systematic understanding of local policy context to plan, generate and purposively integrate co-benefits into the policy-decision-making processes. A methodology was developed to analyse the use of co-benefits in local government climate-related policies in New South Wales from July 2015 to May 2016. Investigation comprised three phases: a targeted on-line survey; review of councils’ climate-related policies; and in-depth interviewing of council officers. The on-line survey provides an informative overview of the factors that drive local action on climate change. The narratives generated from the interviews take this further revealing in-depth insights into policy-makers’ perceptions about the role of each factor, as well as an understanding of motivations for the uptake of co-benefits in policy. The thesis found that climate change mitigation is primarily driven by the dual objectives of reducing emissions and energy consumption. A focus on monetary considerations, together with constrained authority, policy and legislative support from higher levels of government, absence of data and know-how to assess co-benefits collectively, are key influences. As a consequence, most councils target only certain (quantifiable) benefits from ‘energy-related’ mitigation measures. This excludes significant health-related benefits. A broader policy direction from state to local government is required to facilitate adoption of a co-benefits framework by local government. This will enable councils to more readily consider non-climatic and non-energy-related benefits of low carbon measures. This thesis contributes a clearer understanding of local governments’ current use of the co-benefits approach in tackling climate change. This will help to purposively consider, plan, generate and promote co-benefits in planning for climate change in Australia by decision-makers.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2019 AustraliaPublisher:UNSW Sydney Authors: Karim, Sardar;handle: 1959.4/62960
Climate change is undeniably the most urgent issue facing humanity. While the Paris Climate Agreement made progress in bringing about international collaboration, for Australia, outcomes at the national level remain uncertain. Nevertheless, the growing involvement of local governments in climate action is encouraging. Not only are the impacts most keenly experienced at this level, there is greater opportunity for control. This is particularly so as a range of non-climate-related co-benefits of climate change mitigation are available at this level. These co-benefits motivate governments to frame climate change mitigation in a positive light to operationalise broader economic, social, health and environmental benefits of low-carbon policies within the concept of sustainable development. Despite substantial evidence for co-benefits, their policy impact remains limited and under-developed. This thesis investigates local governments’ understandings of the ‘co-benefits approach’ in planning for climate change. It provides a systematic understanding of local policy context to plan, generate and purposively integrate co-benefits into the policy-decision-making processes. A methodology was developed to analyse the use of co-benefits in local government climate-related policies in New South Wales from July 2015 to May 2016. Investigation comprised three phases: a targeted on-line survey; review of councils’ climate-related policies; and in-depth interviewing of council officers. The on-line survey provides an informative overview of the factors that drive local action on climate change. The narratives generated from the interviews take this further revealing in-depth insights into policy-makers’ perceptions about the role of each factor, as well as an understanding of motivations for the uptake of co-benefits in policy. The thesis found that climate change mitigation is primarily driven by the dual objectives of reducing emissions and energy consumption. A focus on monetary considerations, together with constrained authority, policy and legislative support from higher levels of government, absence of data and know-how to assess co-benefits collectively, are key influences. As a consequence, most councils target only certain (quantifiable) benefits from ‘energy-related’ mitigation measures. This excludes significant health-related benefits. A broader policy direction from state to local government is required to facilitate adoption of a co-benefits framework by local government. This will enable councils to more readily consider non-climatic and non-energy-related benefits of low carbon measures. This thesis contributes a clearer understanding of local governments’ current use of the co-benefits approach in tackling climate change. This will help to purposively consider, plan, generate and promote co-benefits in planning for climate change in Australia by decision-makers.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Colin R. Ward; Lila W. Gurba;Abstract The rank of the Permian coals in the Gunnedah Basin has been analyzed using both petrographic and chemical methods. Apart from the effects of local igneous intrusions, a number of seams in the sequence have vitrinite reflectance values (Rv max) that deviate significantly from the trend expected with a steady downward increase in coalification. Correlation of these anomalies with interpreted depositional environments suggests that abnormally low vitrinite reflectance values in the sequence occur in seams either overlain by or intimately associated with marine strata. The three-dimensional distribution of such low reflectance values, in part of the section at least, can be related either to the lithofacies pattern or post-depositional groundwater flow associated with a major fan-delta system. Coals with anomalously high vitrinite reflectance values appear to contain material described elsewhere as pseudovitrinite, a component not previously reported in Australian Permian bituminous coals. Both low-value and high-value anomalies need to be taken into account when interpreting maturation patterns from vitrinite reflectance data. In some cases other rank indicators such as air-dried moisture may be useful to complement vitrinite reflectance in rank studies of high volatile bituminous coals. Abnormally low vitrinite reflectance values due to environmental factors such as marine influence, on the other hand, may be used to identify flooding-surface sequence boundaries in the basin for stratigraphic and sedimentological investigations.
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Colin R. Ward; Lila W. Gurba;Abstract The rank of the Permian coals in the Gunnedah Basin has been analyzed using both petrographic and chemical methods. Apart from the effects of local igneous intrusions, a number of seams in the sequence have vitrinite reflectance values (Rv max) that deviate significantly from the trend expected with a steady downward increase in coalification. Correlation of these anomalies with interpreted depositional environments suggests that abnormally low vitrinite reflectance values in the sequence occur in seams either overlain by or intimately associated with marine strata. The three-dimensional distribution of such low reflectance values, in part of the section at least, can be related either to the lithofacies pattern or post-depositional groundwater flow associated with a major fan-delta system. Coals with anomalously high vitrinite reflectance values appear to contain material described elsewhere as pseudovitrinite, a component not previously reported in Australian Permian bituminous coals. Both low-value and high-value anomalies need to be taken into account when interpreting maturation patterns from vitrinite reflectance data. In some cases other rank indicators such as air-dried moisture may be useful to complement vitrinite reflectance in rank studies of high volatile bituminous coals. Abnormally low vitrinite reflectance values due to environmental factors such as marine influence, on the other hand, may be used to identify flooding-surface sequence boundaries in the basin for stratigraphic and sedimentological investigations.
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Hughes, J; Pearson, E; Grafenauer, S;Despite the well-known human and planetary health benefits of legumes, consumption is often low. This scoping review aimed to evaluate the inclusion of legumes in global food-based dietary guidelines (FBDG), and to review consumption data against global food group classifications for legumes. The review of FBDG from 94 countries identified legume-based key messaging, the key terms used to define legumes, recommended serving size and frequency of consumption and the classification of legumes into food groups as depicted by food guides. The 2018 Global Dietary Database isolated consumption data of legumes and beans using individual-level, nationally representative dietary survey data for matched countries. Food-based dietary guidelines from 40/94 countries most often identified legumes utilising the term legumes, followed by beans (n = 13), pulses (n = 10), or as beans, peas and lentils (n = 5). The serving size recommendations for legume consumption varied widely, and there was no consistency in the suggested frequency of consumption. Median bean and legume consumption for countries with FBDG ranged from 1.2 g/d (Norway) to 122.7 g/d (Afghanistan). Classification of legumes into food groups varied, with 38% of countries categorising legumes in the protein-rich food group, 20% were in a group on their own and 15% were in the starchy staples group. In countries where legumes were together with either nuts or seeds had the greatest range in intake (11.6–122.7 g/day), followed by those that grouped legumes together with protein-rich foods (4.0–104.7 g/day), while countries that grouped legumes into two food groups, in an attempt to promote consumption, tended to have a lower consumption. Greater emphasis and perhaps repositioning of legumes in dietary guidelines may be required to encourage consumption for health, environmental and economic benefits.
UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Hughes, J; Pearson, E; Grafenauer, S;Despite the well-known human and planetary health benefits of legumes, consumption is often low. This scoping review aimed to evaluate the inclusion of legumes in global food-based dietary guidelines (FBDG), and to review consumption data against global food group classifications for legumes. The review of FBDG from 94 countries identified legume-based key messaging, the key terms used to define legumes, recommended serving size and frequency of consumption and the classification of legumes into food groups as depicted by food guides. The 2018 Global Dietary Database isolated consumption data of legumes and beans using individual-level, nationally representative dietary survey data for matched countries. Food-based dietary guidelines from 40/94 countries most often identified legumes utilising the term legumes, followed by beans (n = 13), pulses (n = 10), or as beans, peas and lentils (n = 5). The serving size recommendations for legume consumption varied widely, and there was no consistency in the suggested frequency of consumption. Median bean and legume consumption for countries with FBDG ranged from 1.2 g/d (Norway) to 122.7 g/d (Afghanistan). Classification of legumes into food groups varied, with 38% of countries categorising legumes in the protein-rich food group, 20% were in a group on their own and 15% were in the starchy staples group. In countries where legumes were together with either nuts or seeds had the greatest range in intake (11.6–122.7 g/day), followed by those that grouped legumes together with protein-rich foods (4.0–104.7 g/day), while countries that grouped legumes into two food groups, in an attempt to promote consumption, tended to have a lower consumption. Greater emphasis and perhaps repositioning of legumes in dietary guidelines may be required to encourage consumption for health, environmental and economic benefits.
UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, AustraliaPublisher:AMPCo Martina K. Linnenluecke; Arunima Malik; Peng Bi; Sinead Boylan; Ivan Hanigan; Stefan Trueck; Paul J. Beggs; Ying Zhang; Robyn Alders; Hilary Bambrick; Geoffrey G. Morgan; Elizabeth G. Hanna; Nick Watts; Helen L. Berry; Anthony Capon; Shilu Tong; Shilu Tong; Yuming Guo; Mark Stevenson; Donna Green;doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, AustraliaPublisher:AMPCo Martina K. Linnenluecke; Arunima Malik; Peng Bi; Sinead Boylan; Ivan Hanigan; Stefan Trueck; Paul J. Beggs; Ying Zhang; Robyn Alders; Hilary Bambrick; Geoffrey G. Morgan; Elizabeth G. Hanna; Nick Watts; Helen L. Berry; Anthony Capon; Shilu Tong; Shilu Tong; Yuming Guo; Mark Stevenson; Donna Green;doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes; Serina Ahlgren; Pål Börjesson; Annette L. Cowie;doi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2012Publisher:Wiley Authors: Göran Berndes; Serina Ahlgren; Pål Börjesson; Annette L. Cowie;doi: 10.1002/wene.41
AbstractBioenergy projects can lead to direct and indirect land use change (LUC), which can substantially affect greenhouse gas balances with both beneficial and adverse outcomes for bioenergy's contribution to climate change mitigation. The causes behind LUC are multiple, complex, interlinked, and change over time. This makes quantification uncertain and sensitive to many factors that can develop in different directions—including land use productivity, trade patterns, prices and elasticities, and use of by‐products associated with biofuels production. Quantifications reported so far vary substantially and do not support the ranking of bioenergy options with regard to LUC and associated emissions. There are however several options for mitigating these emissions, which can be implemented despite the uncertainties. Long‐rotation forest management is associated with carbon emissions and sequestration that are not in temporal balance with each other and this leads to mitigation trade‐offs between biomass extraction for energy use and the alternative to leave the biomass in the forest. Bioenergy's contribution to climate change mitigation needs to reflect a balance between near‐term targets and the long‐term objective to hold the increase in global temperature below 2°C (Copenhagen Accord). Although emissions from LUC can be significant in some circumstances, the reality of such emissions is not sufficient reason to exclude bioenergy from the list of worthwhile technologies for climate change mitigation. Policy measures to minimize the negative impacts of LUC should be based on a holistic perspective recognizing the multiple drivers and effects of LUC.This article is categorized under: Bioenergy > Economics and Policy Bioenergy > Climate and Environment
Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Research Papers in E... arrow_drop_down Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentOther literature typeData sources: Microsoft Academic GraphWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2020 AustraliaPublisher:UNSW Sydney Authors: Avgoustinos, Constantine;handle: 1959.4/65521
Climate change poses a serious threat to the long-term structural integrity, if not existence, of the Australian constitutional system. This means that Australian government action worsening climate change poses a threat to this constitutional system. When government action threatens this system, even in a partial or incremental manner, the High Court may derive implications from the Commonwealth Constitution (‘Constitution’) to restrain such action. This is the reasoning underpinning the Court’s establishment of implied limitations such as the Melbourne Corporation and political communication limitations. Based on this reasoning, I explore in this thesis whether a doctrinal argument can be made for deriving a new implication from the Constitution that I refer to as the ‘ecological limitation’. This limitation, if established, would restrain some forms of Commonwealth or State legislative and executive action worsening climate change in the interests of preserving the Australian constitutional system. My methodology for assessing the doctrinal merits of this proposed implication is framed by the High Court’s ‘text and structure approach’ articulated in Lange v Australian Broadcasting Corporation (1997) 189 CLR 520. This interpretive approach requires implications to be derived from the text and structure of the Constitution. I supplement this approach by drawing comparisons between the ecological limitation and established implications to gain further insights on what aspects of a proposed implication may be deemed acceptable and unacceptable by the Court. Finally, I tease out the operation of the ecological limitation by considering its hypothetical application in relation to a real occurrence. Namely, I consider how the limitation might apply to restrain Queensland government approval of a proposed coal mine – the Carmichael mine currently being pursued by Adani Mining Pty Ltd. By following this methodology, I arrive at the doctrinal argument for deriving the ecological limitation outlined above and assess the doctrinal arguments against its derivation that might be raised in response (such as concerns regarding the political decision-making judges would have to engage in if the limitation is established). I conclude that a compelling doctrinal case can be made in support of the ecological limitation that can withstand these counter-arguments.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2020 AustraliaPublisher:UNSW Sydney Authors: Avgoustinos, Constantine;handle: 1959.4/65521
Climate change poses a serious threat to the long-term structural integrity, if not existence, of the Australian constitutional system. This means that Australian government action worsening climate change poses a threat to this constitutional system. When government action threatens this system, even in a partial or incremental manner, the High Court may derive implications from the Commonwealth Constitution (‘Constitution’) to restrain such action. This is the reasoning underpinning the Court’s establishment of implied limitations such as the Melbourne Corporation and political communication limitations. Based on this reasoning, I explore in this thesis whether a doctrinal argument can be made for deriving a new implication from the Constitution that I refer to as the ‘ecological limitation’. This limitation, if established, would restrain some forms of Commonwealth or State legislative and executive action worsening climate change in the interests of preserving the Australian constitutional system. My methodology for assessing the doctrinal merits of this proposed implication is framed by the High Court’s ‘text and structure approach’ articulated in Lange v Australian Broadcasting Corporation (1997) 189 CLR 520. This interpretive approach requires implications to be derived from the text and structure of the Constitution. I supplement this approach by drawing comparisons between the ecological limitation and established implications to gain further insights on what aspects of a proposed implication may be deemed acceptable and unacceptable by the Court. Finally, I tease out the operation of the ecological limitation by considering its hypothetical application in relation to a real occurrence. Namely, I consider how the limitation might apply to restrain Queensland government approval of a proposed coal mine – the Carmichael mine currently being pursued by Adani Mining Pty Ltd. By following this methodology, I arrive at the doctrinal argument for deriving the ecological limitation outlined above and assess the doctrinal arguments against its derivation that might be raised in response (such as concerns regarding the political decision-making judges would have to engage in if the limitation is established). I conclude that a compelling doctrinal case can be made in support of the ecological limitation that can withstand these counter-arguments.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/65521Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21713&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Kuenzer, Claudia; Heimhuber, Valentin; Day, John; Varis, Olli; Bucx, Tom; Renaud, Fabrice; Gaohuan, Liu; Tuan, Vo Quoc; Schlurmann, Thorsten; Glamore; William;River deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Zheng, Cheng;handle: 1959.4/59620
Nearly 50% of global energy consumption is associated with meeting thermal requirements. Whilst some of this is heat goes to low temperature applications like hot water supply, there is also a huge demand for the supply of 100-250oC thermal energy for industrial and commercial applications which is currently met by gas and electricity. However, using innovative optical and thermal technologies, it can also (potentially) be met by concentrated sunlight from urban rooftop collectors, eliminating billions of kg of CO2 emissions per year. Hence, it may be possible to develop new, advanced collectors to substantially increase the amount of commercial rooftop solar energy harvesting. At present, though, there are still some barriers to overcome to successfully collect large scale of 100-250oC thermal energy from rooftops. One key barrier for most concentrated solar systems is that integration with rooftops is relatively complex and cumbersome in comparison with photovoltaic (PV) panels. This requires a new type of concentrator which is efficient, low-cost and has a low-wind/aesthetic profile. These criteria point to thin concentrators that can be rack-mounted or laid flat on the roof with minimal balance of system requirements. The system should have similar geometrical features and appearance to PV panels and non-concentrating solar hot water collection panels, which are by far the most widely deployed solar collection systems to date. Such a concentrating collector has yet to be demonstrated. As such, this study aims to advancing rooftop solar concentrating technology for commercial and industrial applications via the development of thin optical elements which avoid rotational tracking. During the course of the research, several innovative low-profile optical concentrators (<15cm in height) were designed, developed and systematically investigated to demonstrate their potential to deliver heat energy in the 100-250oC range. A series of experiments were conducted to validate these compact optical concentrator concepts and to demonstrate their performance as semi-passive, internal tracking and concentrating. An economic analysis was also performed to evaluate the feasibility of the final, optimized design proposed in this thesis. Overall, this study offers new optical platforms to advance the utilization of solar energy in urban areas.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2018 AustraliaPublisher:UNSW Sydney Authors: Zheng, Cheng;handle: 1959.4/59620
Nearly 50% of global energy consumption is associated with meeting thermal requirements. Whilst some of this is heat goes to low temperature applications like hot water supply, there is also a huge demand for the supply of 100-250oC thermal energy for industrial and commercial applications which is currently met by gas and electricity. However, using innovative optical and thermal technologies, it can also (potentially) be met by concentrated sunlight from urban rooftop collectors, eliminating billions of kg of CO2 emissions per year. Hence, it may be possible to develop new, advanced collectors to substantially increase the amount of commercial rooftop solar energy harvesting. At present, though, there are still some barriers to overcome to successfully collect large scale of 100-250oC thermal energy from rooftops. One key barrier for most concentrated solar systems is that integration with rooftops is relatively complex and cumbersome in comparison with photovoltaic (PV) panels. This requires a new type of concentrator which is efficient, low-cost and has a low-wind/aesthetic profile. These criteria point to thin concentrators that can be rack-mounted or laid flat on the roof with minimal balance of system requirements. The system should have similar geometrical features and appearance to PV panels and non-concentrating solar hot water collection panels, which are by far the most widely deployed solar collection systems to date. Such a concentrating collector has yet to be demonstrated. As such, this study aims to advancing rooftop solar concentrating technology for commercial and industrial applications via the development of thin optical elements which avoid rotational tracking. During the course of the research, several innovative low-profile optical concentrators (<15cm in height) were designed, developed and systematically investigated to demonstrate their potential to deliver heat energy in the 100-250oC range. A series of experiments were conducted to validate these compact optical concentrator concepts and to demonstrate their performance as semi-passive, internal tracking and concentrating. An economic analysis was also performed to evaluate the feasibility of the final, optimized design proposed in this thesis. Overall, this study offers new optical platforms to advance the utilization of solar energy in urban areas.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2018License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/59620Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/20241&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2011 AustraliaPublisher:UNSW Sydney Authors: Guglyuvatyy, Evgeny;handle: 1959.4/50409
The primary question explored by this thesis is what alternative, carbon tax or emissions trading, would be an optimal policy for climate change mitigation in Australia. This thesis focuses on assessing carbon tax and emissions trading policy options on the basis of multiple criteria related to climate change policy in the Australian context. The study analyses the issues of environmental degradation, policy responses to the climate change issue, carbon taxation and emissions trading as a theoretical foundation for addressing the research question. The weaknesses of common evaluation methods and practices in dealing with climate change policy are also critiqued. After reviewing policy evaluation methods, the study builds a methodological framework to assess the climate change policy options based on the multi-criteria and Delphi methods. To facilitate the evaluation procedure, the criteria necessary for the climate change policy evaluation are identified. This study employs the Delphi method to verify the evaluation criteria in the Australian context and to assess the relative importance of these criteria. The thesis also attempts to construct carbon tax and emissions trading policies for Australia using a combination of theoretical and practical considerations. Further, these two contrasting policies are qualitatively analysed with reference to the identified criteria to assess potential performance of the proposed carbon tax and emissions trading. The resultant evaluation criteria and performance ranks of each proposed policy option allows building a decision matrix which facilitates the final evaluation and selection of an optimal policy. The evaluation results reveal that the carbon tax policy constructed by this study outperforms the designed emissions trading in terms of many criteria. As a result, the carbon tax is identified as an optimal climate change mitigation policy for Australia. The results of this study also indicate that the emissions trading proposed by the Australian Government might be a misleading policy founded on biased assumptions. Based on these findings it is recommended that Australia reconsider carbon tax and emissions trading policies on the basis of well developed multiple criteria to obtain a justified and sustained policy solution.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2011 AustraliaPublisher:UNSW Sydney Authors: Guglyuvatyy, Evgeny;handle: 1959.4/50409
The primary question explored by this thesis is what alternative, carbon tax or emissions trading, would be an optimal policy for climate change mitigation in Australia. This thesis focuses on assessing carbon tax and emissions trading policy options on the basis of multiple criteria related to climate change policy in the Australian context. The study analyses the issues of environmental degradation, policy responses to the climate change issue, carbon taxation and emissions trading as a theoretical foundation for addressing the research question. The weaknesses of common evaluation methods and practices in dealing with climate change policy are also critiqued. After reviewing policy evaluation methods, the study builds a methodological framework to assess the climate change policy options based on the multi-criteria and Delphi methods. To facilitate the evaluation procedure, the criteria necessary for the climate change policy evaluation are identified. This study employs the Delphi method to verify the evaluation criteria in the Australian context and to assess the relative importance of these criteria. The thesis also attempts to construct carbon tax and emissions trading policies for Australia using a combination of theoretical and practical considerations. Further, these two contrasting policies are qualitatively analysed with reference to the identified criteria to assess potential performance of the proposed carbon tax and emissions trading. The resultant evaluation criteria and performance ranks of each proposed policy option allows building a decision matrix which facilitates the final evaluation and selection of an optimal policy. The evaluation results reveal that the carbon tax policy constructed by this study outperforms the designed emissions trading in terms of many criteria. As a result, the carbon tax is identified as an optimal climate change mitigation policy for Australia. The results of this study also indicate that the emissions trading proposed by the Australian Government might be a misleading policy founded on biased assumptions. Based on these findings it is recommended that Australia reconsider carbon tax and emissions trading policies on the basis of well developed multiple criteria to obtain a justified and sustained policy solution.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2011License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/50409Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/23569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Industrial Transformation..., ARC | ARC Future Fellowships - ...ARC| Industrial Transformation Training Centres - Grant ID: IC200100023 ,ARC| ARC Future Fellowships - Grant ID: FT190100361Authors: Xiaobing Yu; Yansong Shen; Zhongjie Hu;Abstract Hydrogen, as a carbon-free fuel and reducing agent, has the potential to mitigate carbon dioxide emission in BF ironmaking and the shaft injection is one of the promising and feasible processes; however, its effects on non-renewable fossil fuels saving in ironmaking process and the in-furnace phenomena are still not clear. In this study, a multi-fluid BF model is adopted to study hydrogen shaft injection's influence on in-furnace phenomena and BF performance, including flow-thermal-chemical behaviors and fossil fuel rate saving. The computational domain includes the industrial-scale BF regions from the slag surface in the hearth to the stock line near the furnace top, and the study is carried out under a fixed bosh gas flow rate. The simulation results show that compared with regular BF operation, hydrogen shaft injection can considerably affect BF performance, including the gas flow field, thermal field, and reduction behaviors. It is found that, as the injection rate increases, the penetration depth of hydrogen shows an increasing trend; the apex of cohesive zone shifts to a higher position with a more concave-shaped profile; moreover, both the reduction degree of iron oxides and thermal conditions in the shaft can be improved, which are accompanied with a significantly decreased fossil fuel rate. This study provides a quantitative tool to understand and optimize the hydrogen shaft injection into BFs towards a low-carbon ironmaking process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Industrial Transformation..., ARC | ARC Future Fellowships - ...ARC| Industrial Transformation Training Centres - Grant ID: IC200100023 ,ARC| ARC Future Fellowships - Grant ID: FT190100361Authors: Xiaobing Yu; Yansong Shen; Zhongjie Hu;Abstract Hydrogen, as a carbon-free fuel and reducing agent, has the potential to mitigate carbon dioxide emission in BF ironmaking and the shaft injection is one of the promising and feasible processes; however, its effects on non-renewable fossil fuels saving in ironmaking process and the in-furnace phenomena are still not clear. In this study, a multi-fluid BF model is adopted to study hydrogen shaft injection's influence on in-furnace phenomena and BF performance, including flow-thermal-chemical behaviors and fossil fuel rate saving. The computational domain includes the industrial-scale BF regions from the slag surface in the hearth to the stock line near the furnace top, and the study is carried out under a fixed bosh gas flow rate. The simulation results show that compared with regular BF operation, hydrogen shaft injection can considerably affect BF performance, including the gas flow field, thermal field, and reduction behaviors. It is found that, as the injection rate increases, the penetration depth of hydrogen shows an increasing trend; the apex of cohesive zone shifts to a higher position with a more concave-shaped profile; moreover, both the reduction degree of iron oxides and thermal conditions in the shaft can be improved, which are accompanied with a significantly decreased fossil fuel rate. This study provides a quantitative tool to understand and optimize the hydrogen shaft injection into BFs towards a low-carbon ironmaking process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.121092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2019 AustraliaPublisher:UNSW Sydney Authors: Karim, Sardar;handle: 1959.4/62960
Climate change is undeniably the most urgent issue facing humanity. While the Paris Climate Agreement made progress in bringing about international collaboration, for Australia, outcomes at the national level remain uncertain. Nevertheless, the growing involvement of local governments in climate action is encouraging. Not only are the impacts most keenly experienced at this level, there is greater opportunity for control. This is particularly so as a range of non-climate-related co-benefits of climate change mitigation are available at this level. These co-benefits motivate governments to frame climate change mitigation in a positive light to operationalise broader economic, social, health and environmental benefits of low-carbon policies within the concept of sustainable development. Despite substantial evidence for co-benefits, their policy impact remains limited and under-developed. This thesis investigates local governments’ understandings of the ‘co-benefits approach’ in planning for climate change. It provides a systematic understanding of local policy context to plan, generate and purposively integrate co-benefits into the policy-decision-making processes. A methodology was developed to analyse the use of co-benefits in local government climate-related policies in New South Wales from July 2015 to May 2016. Investigation comprised three phases: a targeted on-line survey; review of councils’ climate-related policies; and in-depth interviewing of council officers. The on-line survey provides an informative overview of the factors that drive local action on climate change. The narratives generated from the interviews take this further revealing in-depth insights into policy-makers’ perceptions about the role of each factor, as well as an understanding of motivations for the uptake of co-benefits in policy. The thesis found that climate change mitigation is primarily driven by the dual objectives of reducing emissions and energy consumption. A focus on monetary considerations, together with constrained authority, policy and legislative support from higher levels of government, absence of data and know-how to assess co-benefits collectively, are key influences. As a consequence, most councils target only certain (quantifiable) benefits from ‘energy-related’ mitigation measures. This excludes significant health-related benefits. A broader policy direction from state to local government is required to facilitate adoption of a co-benefits framework by local government. This will enable councils to more readily consider non-climatic and non-energy-related benefits of low carbon measures. This thesis contributes a clearer understanding of local governments’ current use of the co-benefits approach in tackling climate change. This will help to purposively consider, plan, generate and promote co-benefits in planning for climate change in Australia by decision-makers.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2019 AustraliaPublisher:UNSW Sydney Authors: Karim, Sardar;handle: 1959.4/62960
Climate change is undeniably the most urgent issue facing humanity. While the Paris Climate Agreement made progress in bringing about international collaboration, for Australia, outcomes at the national level remain uncertain. Nevertheless, the growing involvement of local governments in climate action is encouraging. Not only are the impacts most keenly experienced at this level, there is greater opportunity for control. This is particularly so as a range of non-climate-related co-benefits of climate change mitigation are available at this level. These co-benefits motivate governments to frame climate change mitigation in a positive light to operationalise broader economic, social, health and environmental benefits of low-carbon policies within the concept of sustainable development. Despite substantial evidence for co-benefits, their policy impact remains limited and under-developed. This thesis investigates local governments’ understandings of the ‘co-benefits approach’ in planning for climate change. It provides a systematic understanding of local policy context to plan, generate and purposively integrate co-benefits into the policy-decision-making processes. A methodology was developed to analyse the use of co-benefits in local government climate-related policies in New South Wales from July 2015 to May 2016. Investigation comprised three phases: a targeted on-line survey; review of councils’ climate-related policies; and in-depth interviewing of council officers. The on-line survey provides an informative overview of the factors that drive local action on climate change. The narratives generated from the interviews take this further revealing in-depth insights into policy-makers’ perceptions about the role of each factor, as well as an understanding of motivations for the uptake of co-benefits in policy. The thesis found that climate change mitigation is primarily driven by the dual objectives of reducing emissions and energy consumption. A focus on monetary considerations, together with constrained authority, policy and legislative support from higher levels of government, absence of data and know-how to assess co-benefits collectively, are key influences. As a consequence, most councils target only certain (quantifiable) benefits from ‘energy-related’ mitigation measures. This excludes significant health-related benefits. A broader policy direction from state to local government is required to facilitate adoption of a co-benefits framework by local government. This will enable councils to more readily consider non-climatic and non-energy-related benefits of low carbon measures. This thesis contributes a clearer understanding of local governments’ current use of the co-benefits approach in tackling climate change. This will help to purposively consider, plan, generate and promote co-benefits in planning for climate change in Australia by decision-makers.
UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksDoctoral thesis . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/62960Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26190/unsworks/21296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Colin R. Ward; Lila W. Gurba;Abstract The rank of the Permian coals in the Gunnedah Basin has been analyzed using both petrographic and chemical methods. Apart from the effects of local igneous intrusions, a number of seams in the sequence have vitrinite reflectance values (Rv max) that deviate significantly from the trend expected with a steady downward increase in coalification. Correlation of these anomalies with interpreted depositional environments suggests that abnormally low vitrinite reflectance values in the sequence occur in seams either overlain by or intimately associated with marine strata. The three-dimensional distribution of such low reflectance values, in part of the section at least, can be related either to the lithofacies pattern or post-depositional groundwater flow associated with a major fan-delta system. Coals with anomalously high vitrinite reflectance values appear to contain material described elsewhere as pseudovitrinite, a component not previously reported in Australian Permian bituminous coals. Both low-value and high-value anomalies need to be taken into account when interpreting maturation patterns from vitrinite reflectance data. In some cases other rank indicators such as air-dried moisture may be useful to complement vitrinite reflectance in rank studies of high volatile bituminous coals. Abnormally low vitrinite reflectance values due to environmental factors such as marine influence, on the other hand, may be used to identify flooding-surface sequence boundaries in the basin for stratigraphic and sedimentological investigations.
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998Publisher:Elsevier BV Authors: Colin R. Ward; Lila W. Gurba;Abstract The rank of the Permian coals in the Gunnedah Basin has been analyzed using both petrographic and chemical methods. Apart from the effects of local igneous intrusions, a number of seams in the sequence have vitrinite reflectance values (Rv max) that deviate significantly from the trend expected with a steady downward increase in coalification. Correlation of these anomalies with interpreted depositional environments suggests that abnormally low vitrinite reflectance values in the sequence occur in seams either overlain by or intimately associated with marine strata. The three-dimensional distribution of such low reflectance values, in part of the section at least, can be related either to the lithofacies pattern or post-depositional groundwater flow associated with a major fan-delta system. Coals with anomalously high vitrinite reflectance values appear to contain material described elsewhere as pseudovitrinite, a component not previously reported in Australian Permian bituminous coals. Both low-value and high-value anomalies need to be taken into account when interpreting maturation patterns from vitrinite reflectance data. In some cases other rank indicators such as air-dried moisture may be useful to complement vitrinite reflectance in rank studies of high volatile bituminous coals. Abnormally low vitrinite reflectance values due to environmental factors such as marine influence, on the other hand, may be used to identify flooding-surface sequence boundaries in the basin for stratigraphic and sedimentological investigations.
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0166-5162(97)00033-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Hughes, J; Pearson, E; Grafenauer, S;Despite the well-known human and planetary health benefits of legumes, consumption is often low. This scoping review aimed to evaluate the inclusion of legumes in global food-based dietary guidelines (FBDG), and to review consumption data against global food group classifications for legumes. The review of FBDG from 94 countries identified legume-based key messaging, the key terms used to define legumes, recommended serving size and frequency of consumption and the classification of legumes into food groups as depicted by food guides. The 2018 Global Dietary Database isolated consumption data of legumes and beans using individual-level, nationally representative dietary survey data for matched countries. Food-based dietary guidelines from 40/94 countries most often identified legumes utilising the term legumes, followed by beans (n = 13), pulses (n = 10), or as beans, peas and lentils (n = 5). The serving size recommendations for legume consumption varied widely, and there was no consistency in the suggested frequency of consumption. Median bean and legume consumption for countries with FBDG ranged from 1.2 g/d (Norway) to 122.7 g/d (Afghanistan). Classification of legumes into food groups varied, with 38% of countries categorising legumes in the protein-rich food group, 20% were in a group on their own and 15% were in the starchy staples group. In countries where legumes were together with either nuts or seeds had the greatest range in intake (11.6–122.7 g/day), followed by those that grouped legumes together with protein-rich foods (4.0–104.7 g/day), while countries that grouped legumes into two food groups, in an attempt to promote consumption, tended to have a lower consumption. Greater emphasis and perhaps repositioning of legumes in dietary guidelines may be required to encourage consumption for health, environmental and economic benefits.
UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 AustraliaPublisher:MDPI AG Authors: Hughes, J; Pearson, E; Grafenauer, S;Despite the well-known human and planetary health benefits of legumes, consumption is often low. This scoping review aimed to evaluate the inclusion of legumes in global food-based dietary guidelines (FBDG), and to review consumption data against global food group classifications for legumes. The review of FBDG from 94 countries identified legume-based key messaging, the key terms used to define legumes, recommended serving size and frequency of consumption and the classification of legumes into food groups as depicted by food guides. The 2018 Global Dietary Database isolated consumption data of legumes and beans using individual-level, nationally representative dietary survey data for matched countries. Food-based dietary guidelines from 40/94 countries most often identified legumes utilising the term legumes, followed by beans (n = 13), pulses (n = 10), or as beans, peas and lentils (n = 5). The serving size recommendations for legume consumption varied widely, and there was no consistency in the suggested frequency of consumption. Median bean and legume consumption for countries with FBDG ranged from 1.2 g/d (Norway) to 122.7 g/d (Afghanistan). Classification of legumes into food groups varied, with 38% of countries categorising legumes in the protein-rich food group, 20% were in a group on their own and 15% were in the starchy staples group. In countries where legumes were together with either nuts or seeds had the greatest range in intake (11.6–122.7 g/day), followed by those that grouped legumes together with protein-rich foods (4.0–104.7 g/day), while countries that grouped legumes into two food groups, in an attempt to promote consumption, tended to have a lower consumption. Greater emphasis and perhaps repositioning of legumes in dietary guidelines may be required to encourage consumption for health, environmental and economic benefits.
UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UNSWorks arrow_drop_down UNSWorksArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1959.4/unsworks_81133Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nu14153080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, AustraliaPublisher:AMPCo Martina K. Linnenluecke; Arunima Malik; Peng Bi; Sinead Boylan; Ivan Hanigan; Stefan Trueck; Paul J. Beggs; Ying Zhang; Robyn Alders; Hilary Bambrick; Geoffrey G. Morgan; Elizabeth G. Hanna; Nick Watts; Helen L. Berry; Anthony Capon; Shilu Tong; Shilu Tong; Yuming Guo; Mark Stevenson; Donna Green;doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United Kingdom, AustraliaPublisher:AMPCo Martina K. Linnenluecke; Arunima Malik; Peng Bi; Sinead Boylan; Ivan Hanigan; Stefan Trueck; Paul J. Beggs; Ying Zhang; Robyn Alders; Hilary Bambrick; Geoffrey G. Morgan; Elizabeth G. Hanna; Nick Watts; Helen L. Berry; Anthony Capon; Shilu Tong; Shilu Tong; Yuming Guo; Mark Stevenson; Donna Green;doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
doi: 10.5694/mja18.00789
pmid: 30521429
handle: 11343/235756 , 1885/316835 , 1885/186550 , 2440/128553
Climate plays an important role in human health and it is well established that climate change can have very significant impacts in this regard. In partnership with The Lancet and the MJA, we present the inaugural Australian Countdown assessment of progress on climate change and health. This comprehensive assessment examines 41 indicators across five broad sections: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. These indicators and the methods used for each are largely consistent with those of the Lancet Countdown global assessment published in October 2017, but with an Australian focus. Significant developments include the addition of a new indicator on mental health. Overall, we find that Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In a number of respects, Australia has gone backwards and now lags behind other high income countries such as Germany and the United Kingdom. Examples include the persistence of a very high carbon-intensive energy system in Australia, and its slow transition to renewables and low carbon electricity generation. However, we also find some examples of good progress, such as heatwave response planning. Given the overall poor state of progress on climate change and health in Australia, this country now has an enormous opportunity to take action and protect human health and lives. Australia has the technical knowhow and intellect to do this, and our annual updates of this assessment will track Australia's engagement with and progress on this vitally important issue.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/316835Data sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/186550Data sources: Bielefeld Academic Search Engine (BASE)The Medical Journal of AustraliaArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefQueensland University of Technology: QUT ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5694/mja18.00789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu