- home
- Advanced Search
- Energy Research
- 2021-2025
- AU
- Roskilde University
- Energy Research
- 2021-2025
- AU
- Roskilde University
description Publicationkeyboard_double_arrow_right Article 2021 Germany, FrancePublisher:MDPI AG Authors: Martha Swamila; Damas Philip; Adam Meshack Akyoo;Julius Manda;
+4 AuthorsJulius Manda
Julius Manda in OpenAIREMartha Swamila; Damas Philip; Adam Meshack Akyoo;Julius Manda;
Julius Manda
Julius Manda in OpenAIRELutengano Mwinuka;
Philip J. Smethurst; Stefan Sieber; Anthony Anderson Kimaro;Lutengano Mwinuka
Lutengano Mwinuka in OpenAIREdoi: 10.3390/su14010053
handle: 10568/117464
Declining soil fertility and climatic extremes are among major problems for agricultural production in most dryland agro-ecologies of sub-Saharan Africa. In response, the agroforestry technology intercropping of Gliricidia (Gliricidia sepium (Jacq.)) and Maize (Zea mays L.) was developed to complement conventional soil fertility management technologies. However, diversified information on the profitability of Gliricidia-Maize intercropping system in dryland areas is scanty. Using data from the Gliricidia and maize models of the Next Generation version of the Agriculture Production Systems sIMulator (APSIM), this study estimates the profitability of the Gliricidia-Maize system relative to an unfertilized sole maize system. Results show significant heterogeneity in profitability indicators both in absolute and relative economic terms. Aggregated over a 20-year cycle, Gliricidia-Maize intercropping exhibited a higher Net Present Value (NPV = Tsh 19,238,798.43) and Benefit Cost Ratio (BCR = 4.27) than the unfertilized sole maize system. The NPV and BCR of the latter were Tsh 10,934,669.90 and 3.59, respectively. Moreover, the returns to labour per person day in the Gliricidia-Maize system was 1.5 times those of the unfertilized sole maize system. Sensitivity analysis revealed that the profitability of the Gliricidia-Maize system is more negatively affected by the decrease in output prices than the increase in input prices. A 30% decrease in the former leads to a decrease in NPV and BCR by 38% and 30%, respectively. Despite the higher initial costs of the agroforestry establishment, the 30% increase in input prices affects more disproportionally unfertilized sole maize than the Gliricidia-Maize system in absolute economic terms, i.e., 11.1% versus 8.8% decrease in NPV. In relative economic terms, an equal magnitude of change in input prices exerts the same effect on the unfertilized sole maize and the Gliricidia-maize systems. This result implies that the monetary benefits accrued after the first year of agroforestry establishment offset the initial investment costs. The Gliricidia-Maize intercropping technology therefore is profitable with time, and it can contribute to increased household income and food security. Helping farmers to overcome initial investment costs and manage agroforestry technologies well to generate additional benefits is critical for the successful scaling of the Gliricidia-Maize intercropping technology in dryland areas of Dodoma, Tanzania.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117464Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 76visibility views 76 download downloads 128 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/117464Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Humboldt-Universität zu BerlinArticle . 2021 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Public Library of Science (PLoS) Funded by:UKRI | Extreme Climatic Events i..., NSERC, ARC | Discovery Projects - Gran... +3 projectsUKRI| Extreme Climatic Events in the Oceans: Towards a mechanistic understanding of ecosystem impacts and resilience ,NSERC ,ARC| Discovery Projects - Grant ID: DP220100650 ,ARC| Discovery Projects - Grant ID: DP190100058 ,RCN| Kelp industrial production: Potential impacts on coastal ecosystems (KELPPRO) ,UKRI| Structure, connectivity and resilience of an exploited ecosystem: towards sustainable ecosystem-based fisheries managementAuthors:Karen Filbee-Dexter;
Karen Filbee-Dexter
Karen Filbee-Dexter in OpenAIREColette J. Feehan;
Dan A. Smale; Kira A. Krumhansl; +22 AuthorsColette J. Feehan
Colette J. Feehan in OpenAIREKaren Filbee-Dexter;
Karen Filbee-Dexter
Karen Filbee-Dexter in OpenAIREColette J. Feehan;
Dan A. Smale; Kira A. Krumhansl; Skye Augustine; Florian de Bettignies; Michael T. Burrows; Jarrett E. K. Byrnes; Jillian Campbell;Colette J. Feehan
Colette J. Feehan in OpenAIREDominique Davoult;
Kenneth H. Dunton; João N. Franco; Ignacio Garrido;Dominique Davoult
Dominique Davoult in OpenAIRESean P. Grace;
Kasper Hancke; Ladd E. Johnson; Brenda Konar; Pippa J. Moore;Sean P. Grace
Sean P. Grace in OpenAIREKjell Magnus Norderhaug;
Kjell Magnus Norderhaug
Kjell Magnus Norderhaug in OpenAIREAlasdair O’Dell;
Morten F. Pedersen; Anne K. Salomon;Alasdair O’Dell
Alasdair O’Dell in OpenAIREIsabel Sousa-Pinto;
Scott Tiegs; Dara Yiu; Thomas Wernberg;Isabel Sousa-Pinto
Isabel Sousa-Pinto in OpenAIRECycling of organic carbon in the ocean has the potential to mitigate or exacerbate global climate change, but major questions remain about the environmental controls on organic carbon flux in the coastal zone. Here, we used a field experiment distributed across 28° of latitude, and the entire range of 2 dominant kelp species in the northern hemisphere, to measure decomposition rates of kelp detritus on the seafloor in relation to local environmental factors. Detritus decomposition in both species were strongly related to ocean temperature and initial carbon content, with higher rates of biomass loss at lower latitudes with warmer temperatures. Our experiment showed slow overall decomposition and turnover of kelp detritus and modeling of coastal residence times at our study sites revealed that a significant portion of this production can remain intact long enough to reach deep marine sinks. The results suggest that decomposition of these kelp species could accelerate with ocean warming and that low-latitude kelp forests could experience the greatest increase in remineralization with a 9% to 42% reduced potential for transport to long-term ocean sinks under short-term (RCP4.5) and long-term (RCP8.5) warming scenarios. However, slow decomposition at high latitudes, where kelp abundance is predicted to expand, indicates potential for increasing kelp-carbon sinks in cooler (northern) regions. Our findings reveal an important latitudinal gradient in coastal ecosystem function that provides an improved capacity to predict the implications of ocean warming on carbon cycling. Broad-scale patterns in organic carbon decomposition revealed here can be used to identify hotspots of carbon sequestration potential and resolve relationships between carbon cycling processes and ocean climate at a global scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001702&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Norway, SpainPublisher:Wiley Funded by:ARC | Discovery Projects - Gran..., ARC | Discovery Early Career Re...ARC| Discovery Projects - Grant ID: DP190100058 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE190100692Authors:Teresa Alcoverro;
Teresa Alcoverro;Teresa Alcoverro
Teresa Alcoverro in OpenAIREAlbert Pessarrodona;
Albert Pessarrodona
Albert Pessarrodona in OpenAIRECarla A. Narvaez;
+10 AuthorsCarla A. Narvaez
Carla A. Narvaez in OpenAIRETeresa Alcoverro;
Teresa Alcoverro;Teresa Alcoverro
Teresa Alcoverro in OpenAIREAlbert Pessarrodona;
Albert Pessarrodona
Albert Pessarrodona in OpenAIRECarla A. Narvaez;
Carla A. Narvaez
Carla A. Narvaez in OpenAIREKaren Filbee-Dexter;
Karen Filbee-Dexter
Karen Filbee-Dexter in OpenAIREKjell Magnus Norderhaug;
Kjell Magnus Norderhaug
Kjell Magnus Norderhaug in OpenAIREThomas Wernberg;
Thomas Wernberg;Thomas Wernberg
Thomas Wernberg in OpenAIRESean P. Grace;
Sean P. Grace
Sean P. Grace in OpenAIREStein Fredriksen;
Stein Fredriksen
Stein Fredriksen in OpenAIREColette J. Feehan;
Colette J. Feehan
Colette J. Feehan in OpenAIREJordi Boada;
Jordi Boada;Jordi Boada
Jordi Boada in OpenAIREYohei Nakamura;
Yohei Nakamura
Yohei Nakamura in OpenAIREAbstractHumans are rapidly transforming the structural configuration of the planet's ecosystems, but these changes and their ecological consequences remain poorly quantified in underwater habitats. Here, we show that the loss of forest‐forming seaweeds and the rise of ground‐covering ‘turfs’ across four continents consistently resulted in the miniaturization of underwater habitat structure, with seascapes converging towards flattened habitats with smaller habitable spaces. Globally, turf seascapes occupied a smaller architectural trait space and were structurally more similar across regions than marine forests, evidencing habitat homogenization. Surprisingly, such habitat convergence occurred despite turf seascapes consisting of vastly different species richness and with different taxa providing habitat architecture, as well as across disparate drivers of marine forest decline. Turf seascapes contained high sediment loads, with the miniaturization of habitat across 100s of km in mid‐Western Australia resulting in reefs retaining an additional ~242 million tons of sediment (four orders of magnitude more than the sediments delivered fluvially annually). Together, this work demonstrates that the replacement of marine forests by turfs is a generalizable phenomenon that has profound consequences for the ecology of temperate reefs.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 32visibility views 32 Powered bymore_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAGlobal Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15759&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu