- home
- Advanced Search
- Energy Research
- 7. Clean energy
- AU
- University of Leeds
- Energy Research
- 7. Clean energy
- AU
- University of Leeds
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors:Minx, Jan C.;
Minx, Jan C.
Minx, Jan C. in OpenAIRELamb, William F.;
Lamb, William F.
Lamb, William F. in OpenAIREAndrew, Robbie M.;
Andrew, Robbie M.
Andrew, Robbie M. in OpenAIRECanadell, Josep G.;
+13 AuthorsCanadell, Josep G.
Canadell, Josep G. in OpenAIREMinx, Jan C.;
Minx, Jan C.
Minx, Jan C. in OpenAIRELamb, William F.;
Lamb, William F.
Lamb, William F. in OpenAIREAndrew, Robbie M.;
Andrew, Robbie M.
Andrew, Robbie M. in OpenAIRECanadell, Josep G.;
Crippa, Monica;Canadell, Josep G.
Canadell, Josep G. in OpenAIREDöbbeling, Niklas;
Döbbeling, Niklas
Döbbeling, Niklas in OpenAIREForster, Piers;
Guizzardi, Diego;Forster, Piers
Forster, Piers in OpenAIREOlivier, Jos;
Olivier, Jos
Olivier, Jos in OpenAIREPongratz, Julia;
Pongratz, Julia
Pongratz, Julia in OpenAIREReisinger, Andy;
Reisinger, Andy
Reisinger, Andy in OpenAIRERigby, Matthew;
Rigby, Matthew
Rigby, Matthew in OpenAIREPeters, Glen;
Peters, Glen
Peters, Glen in OpenAIRESaunois, Marielle;
Saunois, Marielle
Saunois, Marielle in OpenAIRESmith, Steven J.;
Smith, Steven J.
Smith, Steven J. in OpenAIRESolazzo, Efisio;
Solazzo, Efisio
Solazzo, Efisio in OpenAIRETian, Hanqin;
Tian, Hanqin
Tian, Hanqin in OpenAIREComprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han;Domingues, Catia M.;
García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton;Domingues, Catia M.
Domingues, Catia M. in OpenAIREKrinner, Gerhard;
Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès;Krinner, Gerhard
Krinner, Gerhard in OpenAIREPeng, Jian;
Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari;Peng, Jian
Peng, Jian in OpenAIRESavita, Abhishek;
Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Savita, Abhishek
Savita, Abhishek in OpenAIREProject: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Copernicus GmbH Funded by:EC | GENIE, EC | RESCUE, EC | ESM2025EC| GENIE ,EC| RESCUE ,EC| ESM2025Authors:Matthew J. Gidden;
Matthew J. Gidden
Matthew J. Gidden in OpenAIREThomas Gasser;
Thomas Gasser
Thomas Gasser in OpenAIREGiacomo Grassi;
Nicklas Forsell; +6 AuthorsGiacomo Grassi
Giacomo Grassi in OpenAIREMatthew J. Gidden;
Matthew J. Gidden
Matthew J. Gidden in OpenAIREThomas Gasser;
Thomas Gasser
Thomas Gasser in OpenAIREGiacomo Grassi;
Nicklas Forsell;Giacomo Grassi
Giacomo Grassi in OpenAIREIris Janssens;
Iris Janssens
Iris Janssens in OpenAIREWilliam F. Lamb;
William F. Lamb
William F. Lamb in OpenAIREJan Minx;
Jan Minx
Jan Minx in OpenAIREZebedee Nicholls;
Zebedee Nicholls
Zebedee Nicholls in OpenAIREJan Steinhauser;
Jan Steinhauser
Jan Steinhauser in OpenAIREKeywan Riahi;
Keywan Riahi
Keywan Riahi in OpenAIREGlobal mitigation pathways play a critical role in informing climate policies and targets that are in line with international climate goals. However, it is not possible to directly compare modelled results with national inventories used to assess progress under the UNFCCC due to differences in how land-based fluxes are accounted for.National inventories consider carbon flux on managed land using an area-based approach with managed land-areas determined by nations. Emissions scenarios consider a different managed land area and are calibrated against data from detailed global carbon cycle models that account for natural (indirect) and anthropogenic (direct) fluxes separately by design. To disentangle the direct and indirect components of land-based carbon fluxes, we use a reduced complexity climate model with explicit treatment of the land-use sector, OSCAR, one of the models used by the Global Carbon Project. We find the discrepancy between model and NGHGI-based accounting methods globally to be 4.4 ± 1.0 Gt CO2 yr-1 averaged over the 2000-2020 time period, which is in line with existing estimates. We then apply OSCAR to the set of pathways assessed by the IPCC to quantify how this gap evolves over time and estimate how key mitigation benchmarks change.Across both 1.5°C and 2°C scenarios, LULUCF emissions pathways aligned with NGHGI accounting practices show a strong increase in the total land sink until around mid-century. However, the ‘NGHGI alignment gap’  decreases over this period, converging in the 2050-2060s for 1.5°C scenarios and 2070s-2080s for 2°C scenarios. The convergence is primarily a result of the simulated stabilization and then decrease of the CO2-fertilization effect as well as background climate warming reducing the overall effectiveness of the land sink, which in turn reduces the indirect removals considered by NGHGIs. These dynamics lead to land-based emissions reversing their downward trend in most NGHGI-aligned scenarios by mid-century, and result in the LULUCF sector becoming a net-source of emissions by 2100 in about 25% of both 1.5°C and 2°C scenarios.Assessing emission pathways using LULUCF definitions from national inventory accounting results in downward revisions to emissions benchmarks derived from scenarios. NGHGI-aligned pathways result in earlier net-zero CO2 emissions by around 2-5 years for both 1.5°C and 2°C scenarios, and 2030 emission reductions relative to 2020 are enhanced by about 5 percentage points for both pathway categories. When incorporating the additional land removals considered by NGHGIs, the assessed cumulative net CO2 emissions to global net-zero CO2 also decreases systematically by 15-18% for both 1.5°C and 2°C scenarios.We find that increasing removals from direct fluxes in 1.5C scenarios overtake estimated removals using NGHGI conventions in the near term. However, by midcentury, the strengthening of direct removals is balanced by weakening of indirect removals, meaning that, on average, carbon removal on land accounted for using NGHGI conventions in 1.5C scenarios results in about half of the LULUCF removals in current policy scenarios. We discuss the implications of our results for future Global Stocktakes and market mechanisms under the Paris Agreement.
IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2013Publisher:Inderscience Publishers Authors: Duvenage, Ian; Stringer, Lindsay C.; Langston, Craig; Dunstan, Keitha;Considerable effort has been put into developing sustainability assessment frameworks for biofuel production in developing countries. Nevertheless, their successful implementation remains problematic in sub-Saharan Africa. To address this challenge in this paper, through a thorough examination of academic and grey literature, repeatedly occurring sustainability aspects/issues were drawn from internationally recognised biofuel assessment frameworks. Theoretical framings that corresponded with the interlinking socio-environmental-economic qualities and issues for achieving sustainability through ethical implementation conformity (political ecology, development economics, social capital and institutional economics) were then used to inform development of a conceptual framework that could guide biofuel project implementation in sub-Saharan Africa to address complex sustainability issues. The supporting theories pursue sustainable development through, amongst others, an emphasis on the more equitable dispersal of costs and benefits through transparent networking in rural settings and the integration of contrasting viewpoints of diverse stakeholders in emerging economies.
African J of Economi... arrow_drop_down African J of Economic and Sustainable DevelopmentArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ajesd.2013.053055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert African J of Economi... arrow_drop_down African J of Economic and Sustainable DevelopmentArticle . 2013 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1504/ajesd.2013.053055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:UKRI | DTA - University of Leeds, UKRI | Refinery ready bio-petrol..., ARC | Establishing the pathways...UKRI| DTA - University of Leeds ,UKRI| Refinery ready bio-petroleum via novel catalytic hydrothermal processing of microalgae ,ARC| Establishing the pathways of biomass decomposition in hot compressed waterAuthors: Christopher Jazrawi;Patrick Biller;
Yaya He;Patrick Biller
Patrick Biller in OpenAIREAlejandro Montoya;
+3 AuthorsAlejandro Montoya
Alejandro Montoya in OpenAIREChristopher Jazrawi;Patrick Biller;
Yaya He;Patrick Biller
Patrick Biller in OpenAIREAlejandro Montoya;
Andrew B. Ross;Alejandro Montoya
Alejandro Montoya in OpenAIREThomas Maschmeyer;
Thomas Maschmeyer
Thomas Maschmeyer in OpenAIREBrian S. Haynes;
Brian S. Haynes
Brian S. Haynes in OpenAIREHydrothermal liquefaction (HTL) is a promising route for producing renewable fuels and chemicals from algal biomass. However, the protein fraction of the alga gives rise to nitrogen compounds in the oil fraction, which may render the oil unattractive for use in conventional refining processes. We report a two-stage HTL approach with the primary aim of reducing the nitrogen concentration in the bio-crude oil. A mild (b200 °C) pre-treatment step (Stage I) is performed before more severe (250–350 °C) HTL conditions (Stage II) are applied to the microalga Chlorella for the production of bio-crude in a batch reactor. The pre-treatment resulted in up to 50 wt.% of the input nitrogen crossing into the Stage I aqueous phase and, following Stage II processing, reductions in the bio-crude nitrogen contents of up to 55%, relative to the direct HTL of untreated Chlorella were observed. However, since considerable amounts of the starting material were lost in Stage I, overall lower quantities of bio-crude were isolated after Stage II processing, as compared to single-stage processing. Nitrogen extraction during Stage I is enhanced by the addition of acids (1 N sulphuric or formic acid) but the process remains unselective. Overall, it is concluded that the two-stage approach to reducing the nitrogen content of bio-crudes from a protein-rich alga requires careful evaluation of the trade-off between the desired bio-crude properties and the yield obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2014.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 144 citations 144 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 11visibility views 11 download downloads 105 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.algal.2014.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:Springer Science and Business Media LLC Funded by:EC | INTERACTION, UKRI | From emissions to climate..., EC | CONSTRAINEC| INTERACTION ,UKRI| From emissions to climate impacts and back again ,EC| CONSTRAINAuthors:Robert J. Brecha;
Robert J. Brecha
Robert J. Brecha in OpenAIREGaurav Ganti;
Gaurav Ganti
Gaurav Ganti in OpenAIRERobin D. Lamboll;
Robin D. Lamboll
Robin D. Lamboll in OpenAIREZebedee Nicholls;
+6 AuthorsZebedee Nicholls
Zebedee Nicholls in OpenAIRERobert J. Brecha;
Robert J. Brecha
Robert J. Brecha in OpenAIREGaurav Ganti;
Gaurav Ganti
Gaurav Ganti in OpenAIRERobin D. Lamboll;
Robin D. Lamboll
Robin D. Lamboll in OpenAIREZebedee Nicholls;
Bill Hare; Jared Lewis;Zebedee Nicholls
Zebedee Nicholls in OpenAIREMalte Meinshausen;
Malte Meinshausen
Malte Meinshausen in OpenAIREMichiel Schaeffer;
Michiel Schaeffer
Michiel Schaeffer in OpenAIREChristopher J. Smith;
Matthew J. Gidden;Christopher J. Smith
Christopher J. Smith in OpenAIREAbstractScientifically rigorous guidance to policy makers on mitigation options for meeting the Paris Agreement long-term temperature goal requires an evaluation of long-term global-warming implications of greenhouse gas emissions pathways. Here we employ a uniform and transparent methodology to evaluate Paris Agreement compatibility of influential institutional emission scenarios from the grey literature, including those from Shell, BP, and the International Energy Agency. We compare a selection of these scenarios analysed with this methodology to the Integrated Assessment Model scenarios assessed by the Intergovernmental Panel on Climate Change. We harmonize emissions to a consistent base-year and account for all greenhouse gases and aerosol precursor emissions, ensuring a self-consistent comparison of climate variables. An evaluation of peak and end-of-century temperatures is made, with both being relevant to the Paris Agreement goal. Of the scenarios assessed, we find that only the IEA Net Zero 2050 scenario is aligned with the criteria for Paris Agreement consistency employed here. We investigate root causes for misalignment with these criteria based on the underlying energy system transformation.
CORE arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/317281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-31734-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 18visibility views 18 download downloads 6 Powered bymore_vert CORE arrow_drop_down The University of Melbourne: Digital RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/11343/317281Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-31734-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:UKRI | SUSTAINABLE BIOMASS BASED...UKRI| SUSTAINABLE BIOMASS BASED ENERGY SYSTEMS TO 2020 AND BEYONDAuthors:Zichun Wang;
Zichun Wang
Zichun Wang in OpenAIREChunfei Wu;
Chunfei Wu
Chunfei Wu in OpenAIREJun Huang;
Jun Huang
Jun Huang in OpenAIREPaul T. Williams;
Paul T. Williams
Paul T. Williams in OpenAIREAbstract Cellulose, hemicellulose and lignin are the main components of biomass. This work presents research into the pyrolysis/gasification of all three main components of biomass, in order to evaluate and compare their hydrogen production and also understand their gasification processes. A fixed bed, two-stage reaction system has been used employing various nickel-based catalysts. Gas concentration (CO, H2, CO, CO2 and CH4) was analysed for the produced non-condensed gases. Oil byproducts were analysed by gas chromatography/mass spectrometry (GC/MS). Various techniques such as X-Ray Diffraction (XRD), scanning electron microscopy (SEM) coupled to an energy dispersive X-ray spectroscopy (EDXS), temperature-programmed oxidation (TPO) were applied to characterize the fresh or reacted catalysts. The experimental results show that the lignin sample generates the highest residue fraction (52.0 wt.%) among the three biomass components. When Ni Zn Al (1:1) catalyst was used in the gasification process, gas yield was increased from 62.4 to 68.2 wt.% for cellulose, and from 25.2 to 50.0 wt.% for the pyrolysis/gasification of lignin. Hydrogen production was increased from 7.0 to 18.7 (m mol g−1 sample) when the Ni Zn Al (1:1) catalyst was introduced in the pyrolysis/gasification of cellulose. Among the investigated catalysts, Ni Ca Al (1:1) was found to be the most effective for hydrogen production from cellulose pyrolysis/gasification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 151 citations 151 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors:Mohamed M. Mohamed;
Walid El-Shorbagy;Mohamed M. Mohamed
Mohamed M. Mohamed in OpenAIREMohamed I. Kizhisseri;
Mohamed I. Kizhisseri
Mohamed I. Kizhisseri in OpenAIRERezaul Chowdhury;
+1 AuthorsRezaul Chowdhury
Rezaul Chowdhury in OpenAIREMohamed M. Mohamed;
Walid El-Shorbagy;Mohamed M. Mohamed
Mohamed M. Mohamed in OpenAIREMohamed I. Kizhisseri;
Mohamed I. Kizhisseri
Mohamed I. Kizhisseri in OpenAIRERezaul Chowdhury;
Adrian McDonald;Rezaul Chowdhury
Rezaul Chowdhury in OpenAIREStudy region: Abu Dhabi, United Arab Emirates (UAE) Study focus: Water demand in the Emirate of Abu Dhabi (EAD) has increased significantly over the last few decades. Hence, a main challenge for the EAD water policy makers is to develop long-term resilient water resources strategies. This study evaluates future water supply-demand condition in the EAD and identifies water management strategies that support a sustainable future. A dynamic water budget modelling framework is used to evaluate future water demand as affected by population growth, economic growth, proposed water related policies, consumption patterns, and climate change. The Abu Dhabi Dynamic Water Budget Model (ADWBM) is used to construct future water scenarios and assess the status of the EAD water system until 2050 in terms of water supply-demand balance. This study presents four suites of water scenarios, namely: Business as Usual (BAU), Policy First (PF), Sustainability by Conservation (SC), and Rainfall Enhanced Sustainability (RES) scenarios. New hydrological insights: Simulation results indicate that both SC and RES scenarios achieved balanced water budget without any shortage throughout the entire period until 2050. The RES scenario is recommended for adoption because of the reasonable and achievable proposed consumption reductions needed in the different demand sectors. The obtained results should be valuable for devising appropriate strategies to prevent potential future water shortages in the Emirate.
University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Hydrology: Regional StudiesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejrh.2020.100758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Southe... arrow_drop_down University of Southern Queensland: USQ ePrintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Hydrology: Regional StudiesArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ejrh.2020.100758&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Research 2013 United Kingdom, GermanyPublisher:IOP Publishing Authors:Peter-Paul Pichler;
Peter-Paul Pichler
Peter-Paul Pichler in OpenAIREJan C. Minx;
Helga Weisz;Jan C. Minx
Jan C. Minx in OpenAIREThomas Wiedmann;
+8 AuthorsThomas Wiedmann
Thomas Wiedmann in OpenAIREPeter-Paul Pichler;
Peter-Paul Pichler
Peter-Paul Pichler in OpenAIREJan C. Minx;
Helga Weisz;Jan C. Minx
Jan C. Minx in OpenAIREThomas Wiedmann;
Thomas Wiedmann; Giovanni Baiocchi; Giovanni Baiocchi;Thomas Wiedmann
Thomas Wiedmann in OpenAIREJohn Barrett;
John Barrett
John Barrett in OpenAIREKuishuang Feng;
Kuishuang Feng
Kuishuang Feng in OpenAIREKlaus Hubacek;
Felix Creutzig;Klaus Hubacek
Klaus Hubacek in OpenAIREMichael Förster;
Michael Förster
Michael Förster in OpenAIREA growing body of literature discusses the CO _2 emissions of cities. Still, little is known about emission patterns across density gradients from remote rural places to highly urbanized areas, the drivers behind those emission patterns and the global emissions triggered by consumption in human settlements—referred to here as the carbon footprint. In this letter we use a hybrid method for estimating the carbon footprints of cities and other human settlements in the UK explicitly linking global supply chains to local consumption activities and associated lifestyles. This analysis comprises all areas in the UK, whether rural or urban. We compare our consumption-based results with extended territorial CO _2 emission estimates and analyse the driving forces that determine the carbon footprint of human settlements in the UK. Our results show that 90% of the human settlements in the UK are net importers of CO _2 emissions. Consumption-based CO _2 emissions are much more homogeneous than extended territorial emissions. Both the highest and lowest carbon footprints can be found in urban areas, but the carbon footprint is consistently higher relative to extended territorial CO _2 emissions in urban as opposed to rural settlement types. The impact of high or low density living remains limited; instead, carbon footprints can be comparatively high or low across density gradients depending on the location-specific socio-demographic, infrastructural and geographic characteristics of the area under consideration. We show that the carbon footprint of cities and other human settlements in the UK is mainly determined by socio-economic rather than geographic and infrastructural drivers at the spatial aggregation of our analysis. It increases with growing income, education and car ownership as well as decreasing household size. Income is not more important than most other socio-economic determinants of the carbon footprint. Possibly, the relationship between lifestyles and infrastructure only impacts carbon footprints significantly at higher spatial granularity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/8/3/035039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 366 citations 366 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/8/3/035039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 Australia, France, United Kingdom, AustraliaPublisher:IOP Publishing Authors:Friederike C. Döbbe;
Friederike C. Döbbe
Friederike C. Döbbe in OpenAIREPauline Scheelbeek;
Nandini Das;Pauline Scheelbeek
Pauline Scheelbeek in OpenAIREKristian S. Nielsen;
+38 AuthorsKristian S. Nielsen
Kristian S. Nielsen in OpenAIREFriederike C. Döbbe;
Friederike C. Döbbe
Friederike C. Döbbe in OpenAIREPauline Scheelbeek;
Nandini Das;Pauline Scheelbeek
Pauline Scheelbeek in OpenAIREKristian S. Nielsen;
Kristian S. Nielsen
Kristian S. Nielsen in OpenAIREJoyashree Roy;
Joyashree Roy;Joyashree Roy
Joyashree Roy in OpenAIRETania Urmee;
Tania Urmee
Tania Urmee in OpenAIREDoris Virág;
Doris Virág
Doris Virág in OpenAIREMahendra Sethi;
Mahendra Sethi
Mahendra Sethi in OpenAIRELucia A. Reisch;
Lucia A. Reisch
Lucia A. Reisch in OpenAIREAneeque Javaid;
Aneeque Javaid
Aneeque Javaid in OpenAIRELeila Niamir;
Steven Sorrell; Victor Court; Max Callaghan; Andrew Hook;Leila Niamir
Leila Niamir in OpenAIREShreya Some;
Shreya Some
Shreya Some in OpenAIREMark Andor;
Mark Andor
Mark Andor in OpenAIREDiana Ivanova;
Diana Ivanova
Diana Ivanova in OpenAIREFinn Müller-Hansen;
Finn Müller-Hansen
Finn Müller-Hansen in OpenAIREChioma Daisy Onyige;
Chioma Daisy Onyige
Chioma Daisy Onyige in OpenAIREBenjamin K. Sovacool;
Benjamin K. Sovacool
Benjamin K. Sovacool in OpenAIREJan C. Minx;
Jan C. Minx;Jan C. Minx
Jan C. Minx in OpenAIREÉrika Mata;
Érika Mata
Érika Mata in OpenAIREWilliam F. Lamb;
William F. Lamb
William F. Lamb in OpenAIREFelix Creutzig;
Felix Creutzig
Felix Creutzig in OpenAIREJulio Díaz-José;
Julio Díaz-José
Julio Díaz-José in OpenAIREMiklós Antal;
Miklós Antal; Charlie Wilson; Charlie Wilson; Maria J. Figueroa; Nadia Maïzi;Miklós Antal
Miklós Antal in OpenAIREDominik Wiedenhofer;
Anjali Ramakrishnan;Dominik Wiedenhofer
Dominik Wiedenhofer in OpenAIREZakia Afroz;
Zakia Afroz; Mathilde Tessier;Zakia Afroz
Zakia Afroz in OpenAIRECan Wan;
Can Wan
Can Wan in OpenAIREHelmut Haberl;
Andy Gouldson;Helmut Haberl
Helmut Haberl in OpenAIREAbstract As current action remains insufficient to meet the goals of the Paris agreement let alone to stabilize the climate, there is increasing hope that solutions related to demand, services and social aspects of climate change mitigation can close the gap. However, given these topics are not investigated by a single epistemic community, the literature base underpinning the associated research continues to be undefined. Here, we aim to delineate a plausible body of literature capturing a comprehensive spectrum of demand, services and social aspects of climate change mitigation. As method we use a novel double-stacked expert—machine learning research architecture and expert evaluation to develop a typology and map key messages relevant for climate change mitigation within this body of literature. First, relying on the official key words provided to the Intergovernmental Panel on Climate Change by governments (across 17 queries), and on specific investigations of domain experts (27 queries), we identify 121 165 non-unique and 99 065 unique academic publications covering issues relevant for demand-side mitigation. Second, we identify a literature typology with four key clusters: policy, housing, mobility, and food/consumption. Third, we systematically extract key content-based insights finding that the housing literature emphasizes social and collective action, whereas the food/consumption literatures highlight behavioral change, but insights also demonstrate the dynamic relationship between behavioral change and social norms. All clusters point to the possibility of improved public health as a result of demand-side solutions. The centrality of the policy cluster suggests that political actions are what bring the different specific approaches together. Fourth, by mapping the underlying epistemic communities we find that researchers are already highly interconnected, glued together by common interests in sustainability and energy demand. We conclude by outlining avenues for interdisciplinary collaboration, synthetic analysis, community building, and by suggesting next steps for evaluating this body of literature.
CORE arrow_drop_down COREArticle . 2021Full-Text: http://sro.sussex.ac.uk/id/eprint/96322/4/Creutzig_2021_Environ._Res._Lett._16_033001.pdfData sources: COREUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)IIASA DAREArticle . 2021License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/17130/1/Creutzig_2021_Environ._Res._Lett._16_033001.pdfData sources: Bielefeld Academic Search Engine (BASE)MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03097209Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abd78b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 49 citations 49 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 46visibility views 46 download downloads 52 Powered bymore_vert CORE arrow_drop_down COREArticle . 2021Full-Text: http://sro.sussex.ac.uk/id/eprint/96322/4/Creutzig_2021_Environ._Res._Lett._16_033001.pdfData sources: COREUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)IIASA DAREArticle . 2021License: CC BYFull-Text: http://pure.iiasa.ac.at/id/eprint/17130/1/Creutzig_2021_Environ._Res._Lett._16_033001.pdfData sources: Bielefeld Academic Search Engine (BASE)MINES ParisTech: Open Archive (HAL)Article . 2021Full-Text: https://hal.science/hal-03097209Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abd78b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu