- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- Open Source
- 7. Clean energy
- 6. Clean water
- 15. Life on land
- 14. Life underwater
- AU
- Energy Research
- Closed Access
- Restricted
- Open Source
- 7. Clean energy
- 6. Clean water
- 15. Life on land
- 14. Life underwater
- AU
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Authors:Monjurul Ehsan, M.;
Monjurul Ehsan, M.
Monjurul Ehsan, M. in OpenAIREDuniam, Sam;
Li, Jishun; Guan, Zhiqiang; +2 AuthorsDuniam, Sam
Duniam, Sam in OpenAIREMonjurul Ehsan, M.;
Monjurul Ehsan, M.
Monjurul Ehsan, M. in OpenAIREDuniam, Sam;
Li, Jishun; Guan, Zhiqiang; Gurgenci, Hal; Klimenko, Alexander;Duniam, Sam
Duniam, Sam in OpenAIREAbstract In arid areas, dry cooling technology is a preferable alternate of wet cooling mainly owing to the scarcity of abundant water supply. However, the supercritical CO2 power cycle still offers considerable thermal performance even at higher ambient temperature using dry cooling. The novelty of this work is the exhaustive designing of dry cooler for supercritical CO2 cycles (recompression and partial cooling) in concentrating solar power application. Prior to the design of tower, a preliminary analysis is conducted in achieving the optimum main compressor inlet temperature (33 °C-recompression and 40 °C-partial cooling) at which the cycle delivers the maximal efficiency. The comparison is performed at same higher and lower pressure and for the partial cooling, the intermediate pressure is optimized. At relatively higher compressor inlet temperatures (above 50 °C), the partial cooling achieves higher efficiency while at lower temperatures (30–49 °C), the recompression shows superior performance. An iterative nodal method is used for the air-cooled finned tube heat exchanger units that takes account of the dramatic variation in thermodynamic properties of CO2 with the bulk temperature. Kroger’s detailed methodology of designing dry cooler is adapted with the implementation of nodal approach for CO2 property variation. A dry cooling tower with 52.45 m height is essential for the recompression cycle, whereas the partial cooling requires two towers of the height of 35.4 m and 38.7 m. A thermal assessment is carried out on the dry cooler under various cycle fluid inlet temperatures and ambient temperatures. During hot and humid ambient conditions, lower compressor inlet temperatures (up to 53.1 °C) are obtained with the recompression cycle compared to partial cooling (up to 64.5 °C). In extreme climate condition of 50 °C air temperature, the recompression cycle provides superior thermal efficiency (46.5% against 45.5%). For future commercialization of dry cooled sCO2 power plant, the recompression cycle is preferred due to its superior performance and lower capital cost for cooling tower design and solar field. The work demonstrates the impact of dry cooling tower design strategy in the context of cycle thermal assessment under various working condition.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.114645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2019.114645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Pancun Chai; Qin Yang; Sidong Pan; Zhejun Pan; Xiaoming Wang; Xiaomei Wang; Xuebo Yin; Wenhao Pan;Abstract Comprehensive information about the concentrations, distribution, and modes of occurrence of elements in coal are important from the environmental and economic point of view. Although a great number of previous studies have investigated the geology of coalbed methane in the Qinshui Basin, only a few studies focused on the inorganic constituents in coal. More specifically, the mode of occurrences of valuable element Li in the No. 3 Coal is still unclear, although Li was found enriched. In this study, we present mineral characteristics, as well as multi-element data on the Permian No. 3 Coal from the Sucun and Gaohe Mines, Changzhi City, southern Qinshui Basin. The studied coals are characterized by low- to medium-ash yield (Ad = 5.72%- 28.18%, 12.34% on average), low volatile matter yield (Vdaf = 8.49–15.17%, 10.96% on average), suggesting a low volatile bituminous coal to semi-anthracite. NH4-illite and kaolinite are the main minerals in the coals detected by XRD, and trace amount of minerals calcite, dolomite, quartz, pyrite and diaspore can also be found. The major elements of the studied No. 3 coals are dominated by SiO2 and Al2O3, ranging 2.49–16.45 wt% and 2.13–12.9 wt% (on a whole-coal basis), respectively. Li is enriched in the No. 3 coals (5
International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coal.2019.103254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Coal GeologyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.coal.2019.103254&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1996 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Makarov, YV; Maslennikov, VA; Hill, DJ;doi: 10.1109/59.544679
handle: 10722/169649
The paper presents a novel approach to reveal loads having the biggest impact on damping of small-disturbed oscillations in power systems. The technique is based on a quasi-optimisation procedure with the cost function reflecting shifts of selected eigenvalues along the real axis when all unknown load parameters are varied within their constraints. The cost function takes into consideration a variety of power system operating conditions. All points of the cost function steepest descent trajectory, obtained in the space of unknown load parameters, correspond locally to biggest shifts of eigenvalues. Participation factors of load parameters are computed along the steepest descent trajectory, and they give ranks of load importance. Small ranks indicate loads which have no influence on damping of selected modes. Big ranks reveal loads whose parameters cause the biggest change in damping under the most unfavourable combination of unknown parameters. Parameters with biggest ranks should be measured first of all to avoid mistakes in evaluation of damping properties and power system stability margins.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 1996 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 1996Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/59.544679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 1996 . Peer-reviewedLicense: IEEE CopyrightData sources: CrossrefUniversity of Hong Kong: HKU Scholars HubArticle . 1996Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/59.544679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Authors: Santosh Shrestha;doi: 10.1002/pip.2469
In order to help keep readers up to date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Transactions on Electron Devices, Journal of Applied Physics, Applied Physics Letters, Progress in Photovoltaics and Solar Energy Materials and Solar Cells. To assist the reader, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions, please email Santosh Shrestha at s.shrestha@unsw.edu.au.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.2469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Elsevier BV It has long been known that the use of finely textured transparent conducting oxide layers substantially improves the performance of thin film amorphous silicon (a-Si:H) solar cells. Major efforts to understand the nature of this effect and to fully capture its potential have been made by researchers using advanced modeling techniques. In this work, modeling the oblique angle optical performance and use of an effective medium approximation to simulate microrough interfaces suggests that effective interface grading makes a significant contribution to optical enhancement.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0927-0248(01)00130-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2002 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0927-0248(01)00130-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Springer Science and Business Media LLC Direct numerical simulation (DNS) coupling with chemistry coordinate mapping (CCM) is presented to simulate flame propagation and auto-ignition in a partially premixed syngas/air mixture. In the CCM approach, the physical domain is mapped into a low dimensional phase space with a few thermodynamic variables as the independent variables. The integration of the chemical reaction rates and heat release rate are done on the grid in the phase space. Previously we showed that for premixed mixtures, two variables temperature and specific element mass fraction of H atom, can be sufficient to construct the phase space for a satisfactory mapping. However, for partially premixed combustion mode, a third phase space variable is required to map the physical cell into the phase space. It is shown that scalar dissipation rate of the element mass ratio of H atom can be used as the third dimension of the phase space. An investigation is carried out on the behavior of CCM and the choice over the element on which the local element mass ratio should be based. Mapping error in the CCM is investigated. It is shown that if the element mass ratio is based on the element involved in the most diffusive molecules, the error of the mapping can approach zero when the grid in the phase space is refined. To validate the CCM approach the results of DNS coupled with CCM (DNS-CCM) are compared with full DNS that integrates the chemical reaction rates and heat release rate directly in physical space. Good agreement between the results from DNS and DNS-CCM is obtained while the computational time is reduced at least by 70 %.
Flow Turbulence and ... arrow_drop_down Flow Turbulence and CombustionArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10494-012-9412-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Flow Turbulence and ... arrow_drop_down Flow Turbulence and CombustionArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10494-012-9412-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: M.P. Srinivasan; Humair Ahmed Baloch;Nabisab Mujawar Mubarak;
Sabzoi Nizamuddin; +3 AuthorsNabisab Mujawar Mubarak
Nabisab Mujawar Mubarak in OpenAIREM.P. Srinivasan; Humair Ahmed Baloch;Nabisab Mujawar Mubarak;
Sabzoi Nizamuddin; Gregory Griffin; Mohammad Khalid; M.T.H. Siddiqui;Nabisab Mujawar Mubarak
Nabisab Mujawar Mubarak in OpenAIREAbstract Catalytic co-liquefaction of high-density polyethylene and sugarcane bagasse over metal salt and oxide catalysts in ethanol solvent was investigated. The obtained bio-oil samples were analyzed and characterized by gas chromatography–mass spectroscopy (GC–MS), nuclear magnetic resonance (NMR), ultimate analysis (CHNS/O), Fourier transform infrared spectroscopy (FTIR) and different solid products characterized by x-ray fluorescence (XRF) and Scanning Electron Microscope (SEM) analysis. The results suggested that adding ZnSO4 gives the highest HHV (34.61 MJ/kg), while CuSO4 gives the highest bio-oil yield (38.42 %) and conversion (69.54 %). GC–MS analysis suggested that the bio-oils contained large amounts of hydrocarbons, phenols, ketone aldehydes, alcohols and esters. The 1H and 13C NMR spectra were integrated over spectral regions to quantify classes of carbon and hydrogen atoms in each bio-oil and suggested that bio-oils largely contain alkanes, aliphatics and alcohols. The liquid products are promising bio-fuel precursors for further utilization.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.104944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.104944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018Publisher:IEEE Zhou, Zhenyu; Xiong, Fei; Xu, Chen; Mumtaz, Shahid; Rodriguez, Jonathan;Chang, Zheng;
Chang, Zheng
Chang, Zheng in OpenAIREIn this paper, we investigate how to apply industrial unmanned aerial vehicles (UAVs) for autonomous power line inspection in smart grid from an energy efficiency perspective. Firstly, the energy consumption minimization problem is formulated as a joint optimization problem, which involves both the large-timescale optimization and the small-timescale optimization. Then, the NP-hard joint optimization problem is transformed to a two- stage optimization problem based on energy consumption magnitude and optimization timescale differences. Next, the first-stage and second-stage problems are solved by exploring dynamic programming (DP) and auction matching, respectively. Finally, the proposed algorithm is verified based on realistic power grid topology. Simulation results demonstrate that the proposed scheme achieves significant energy consumption reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/vtcspring.2018.8417772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/vtcspring.2018.8417772&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007Publisher:Elsevier BV Authors: A.A. Tortosa Masiá; Bart J P Buhre;Terry Wall;
Terry Wall
Terry Wall in OpenAIRERajender Gupta;
Rajender Gupta
Rajender Gupta in OpenAIREDeposits formation on heat transfer surfaces is one of the main problems associated to biomass co-combustion. It reduces plant efficiency and availability and increases maintenance costs. It is obvious that an increasing amount of low-temperature melting components in fuel ash accelerates and aggravates this process. Research is done to evaluate the validity of thermal analysis methods to characterise fusion of biomass and waste ashes. Laboratory ashes from a set of biomass and waste fuels are leached in successive steps. The original and the leached ashes are analysed by Thermo-Mechanical Analysis (TMA). Traces obtained from TMA show to be promising ash fingerprints to classify deposition tendencies. Additionally Simultaneous Thermal Analysis (STA) is performed on selected samples. Furthermore, improved chemical equilibrium calculations are proposed to predict the proportion of melted species resulting from combustion of biomass fuels. The model takes into account the reactivity of the inorganic matter in the fuel as issued from ash leaching.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2007.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Authors: Fan Yang; PeiLin Deng; Qingyong Wang;Jiexin Zhu;
+6 AuthorsJiexin Zhu
Jiexin Zhu in OpenAIREFan Yang; PeiLin Deng; Qingyong Wang;Jiexin Zhu;
Jiexin Zhu
Jiexin Zhu in OpenAIREYa Yan;
Liang Zhou;
Liang Zhou
Liang Zhou in OpenAIREKai Qi;
Kai Qi
Kai Qi in OpenAIREHongfang Liu;
Hongfang Liu
Hongfang Liu in OpenAIREHo Seok Park;
Ho Seok Park
Ho Seok Park in OpenAIREBao Yu Xia;
Bao Yu Xia
Bao Yu Xia in OpenAIREdoi: 10.1039/d0ta03565c
Enriching the interface: metal–organic framework-derived copper oxide nanowires with abundant crystalline interfaces contribute to the efficient electrochemical CO2 reduction towards fast hydrocarbon generation.
Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta03565c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Materials... arrow_drop_down Journal of Materials Chemistry AArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ta03565c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu