- home
- Advanced Search
- Energy Research
- 15. Life on land
- 14. Life underwater
- AU
- Global Change Biology
- Energy Research
- 15. Life on land
- 14. Life underwater
- AU
- Global Change Biology
description Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Bell, James J.; Davy, Simon K.; Jones, Timothy; Taylor, Michael W.; Webster, Nicole S.;doi: 10.1111/gcb.12212
pmid: 23553821
AbstractCoral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end‐Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge‐dominated period far surpasses that of alternative stable‐ecosystem or phase‐shift states reported on modern day coral reefs and, as such, a shift to sponge‐dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral‐ to sponge‐dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature andpH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu264 citations 264 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Bell, James J.; Davy, Simon K.; Jones, Timothy; Taylor, Michael W.; Webster, Nicole S.;doi: 10.1111/gcb.12212
pmid: 23553821
AbstractCoral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end‐Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge‐dominated period far surpasses that of alternative stable‐ecosystem or phase‐shift states reported on modern day coral reefs and, as such, a shift to sponge‐dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral‐ to sponge‐dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature andpH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu264 citations 264 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2023 Spain, Morocco, Germany, SwitzerlandPublisher:Wiley Funded by:EC | BIODESERT, EC | CLIMIFUNEC| BIODESERT ,EC| CLIMIFUNEduardo Moreno‐Jiménez; Fernando T. Maestre; Maren Flagmeier; Emilio Guirado; Miguel Berdugo; Felipe Bastida; Marina Dacal; Paloma Díaz‐Martínez; Raúl Ochoa‐Hueso; César Plaza; Matthias C. Rillig; Thomas W. Crowther; Manuel Delgado‐Baquerizo;pmid: 36305858
handle: 10261/282703 , 10486/706822 , 1959.7/uws:73741
AbstractSoil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 83visibility views 83 download downloads 224 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2023 Spain, Morocco, Germany, SwitzerlandPublisher:Wiley Funded by:EC | BIODESERT, EC | CLIMIFUNEC| BIODESERT ,EC| CLIMIFUNEduardo Moreno‐Jiménez; Fernando T. Maestre; Maren Flagmeier; Emilio Guirado; Miguel Berdugo; Felipe Bastida; Marina Dacal; Paloma Díaz‐Martínez; Raúl Ochoa‐Hueso; César Plaza; Matthias C. Rillig; Thomas W. Crowther; Manuel Delgado‐Baquerizo;pmid: 36305858
handle: 10261/282703 , 10486/706822 , 1959.7/uws:73741
AbstractSoil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 83visibility views 83 download downloads 224 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United Kingdom, United KingdomPublisher:Wiley Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S.; Dawson, Terence P.; Syktus, Jozef; McAlpine, Clive A.;AbstractForest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United Kingdom, United KingdomPublisher:Wiley Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S.; Dawson, Terence P.; Syktus, Jozef; McAlpine, Clive A.;AbstractForest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Jordan A. Thomson; Gary A. Kendrick; John Statton; John Statton; Michael R. Heithaus; Matthew W. Fraser; Derek A. Burkholder; James W. Fourqurean;doi: 10.1111/gcb.12694
pmid: 25145694
AbstractExtreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Jordan A. Thomson; Gary A. Kendrick; John Statton; John Statton; Michael R. Heithaus; Matthew W. Fraser; Derek A. Burkholder; James W. Fourqurean;doi: 10.1111/gcb.12694
pmid: 25145694
AbstractExtreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Japan, Australia, JapanPublisher:Wiley Shintaro Takao; Shintaro Takao; Masahiko Fujii; Jorge García Molinos; Jorge García Molinos; Jorge García Molinos; Hiroya Yamano; Naoki H. Kumagai; Michael T. Burrows; Elvira S. Poloczanska; Elvira S. Poloczanska;AbstractConservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient‐protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species’ climate‐driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping‐stone protection for species that must shift their distribution because of climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Japan, Australia, JapanPublisher:Wiley Shintaro Takao; Shintaro Takao; Masahiko Fujii; Jorge García Molinos; Jorge García Molinos; Jorge García Molinos; Hiroya Yamano; Naoki H. Kumagai; Michael T. Burrows; Elvira S. Poloczanska; Elvira S. Poloczanska;AbstractConservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient‐protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species’ climate‐driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping‐stone protection for species that must shift their distribution because of climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, China (People's Republic of), AustraliaPublisher:Wiley Julian Caley; Stephen Mayfield; Reşit H. Akçakaya; Barry W. Brook; Bayden D. Russell; Scoresby A. Shepherd; Sean D. Connell; Damien A. Fordham; Camille Mellin; Camille Mellin; Corey J. A. Bradshaw; Corey J. A. Bradshaw; Matthew E. Aiello-Lammens;AbstractEvidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated byENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction inAOO. The strongly non‐linear relationship between abalone population size andAOOhas important ramifications for the use ofENMpredictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, China (People's Republic of), AustraliaPublisher:Wiley Julian Caley; Stephen Mayfield; Reşit H. Akçakaya; Barry W. Brook; Bayden D. Russell; Scoresby A. Shepherd; Sean D. Connell; Damien A. Fordham; Camille Mellin; Camille Mellin; Corey J. A. Bradshaw; Corey J. A. Bradshaw; Matthew E. Aiello-Lammens;AbstractEvidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated byENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction inAOO. The strongly non‐linear relationship between abalone population size andAOOhas important ramifications for the use ofENMpredictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Wiley Richard G. Pearson; April E. Reside; Jeremy VanDerWal; Stephen E. Williams; Luke P. Shoo; Luke P. Shoo; Alex S. Anderson;AbstractMontane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Wiley Richard G. Pearson; April E. Reside; Jeremy VanDerWal; Stephen E. Williams; Luke P. Shoo; Luke P. Shoo; Alex S. Anderson;AbstractMontane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:Wiley Ruth J. Doran; Ruth J. Doran; Gemma Woldendorp; Gemma Woldendorp; Marilyn C. Ball; Michael J. Hill; Michael J. Hill;handle: 1885/58691
AbstractAlthough plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below −8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:Wiley Ruth J. Doran; Ruth J. Doran; Gemma Woldendorp; Gemma Woldendorp; Marilyn C. Ball; Michael J. Hill; Michael J. Hill;handle: 1885/58691
AbstractAlthough plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below −8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Funded by:EC | PASTFORWARD, EC | FORMICAEC| PASTFORWARD ,EC| FORMICAMichael P. Perring; Michael P. Perring; Kris Verheyen; Haben Blondeel; Pieter De Frenne; Leen Depauw; Emiel De Lombaerde; Dries Landuyt;AbstractPlant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Funded by:EC | PASTFORWARD, EC | FORMICAEC| PASTFORWARD ,EC| FORMICAMichael P. Perring; Michael P. Perring; Kris Verheyen; Haben Blondeel; Pieter De Frenne; Leen Depauw; Emiel De Lombaerde; Dries Landuyt;AbstractPlant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BelgiumPublisher:Wiley Authors: Byrne, Maria; Gall, Mailie M.L.; Wolfe, Kennedy K.D.L.; Aguera Garcia, Antonio;AbstractDue to climatic warming,Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high‐risk invader of the sub‐Antarctic and Antarctic. To assess the potential range expansion ofA. amurensisto the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adultA. amurensiswith respect to present‐day and future climate scenarios using habitat temperature data to construct species distribution models (SDMs). To integrate the physiological response of the dispersive phase, we determined the thermal envelope of larval development to assess their performance in present‐day and future thermal regimes and the potential for success ofA. amurensisin poleward latitudes. TheSDMindicated that the thermal ‘niche’ of the adult stage correlates with a 0–17 °C and 1–22.5 °C range, in winter and summer, respectively. As the ocean warms, the range ofA. amurensisin Australia will contract, while more southern latitudes will have conditions favourable for range expansion. Successful fertilization occurred from 3 to 23.8 °C. By day 12, development to the early larval stage was successful from 5.5 to 18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5–19.2 °C with a lower and upper critical limit of 2.6 and 20.3 °C, respectively. Our data predict thatA. amurensisfaces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BelgiumPublisher:Wiley Authors: Byrne, Maria; Gall, Mailie M.L.; Wolfe, Kennedy K.D.L.; Aguera Garcia, Antonio;AbstractDue to climatic warming,Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high‐risk invader of the sub‐Antarctic and Antarctic. To assess the potential range expansion ofA. amurensisto the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adultA. amurensiswith respect to present‐day and future climate scenarios using habitat temperature data to construct species distribution models (SDMs). To integrate the physiological response of the dispersive phase, we determined the thermal envelope of larval development to assess their performance in present‐day and future thermal regimes and the potential for success ofA. amurensisin poleward latitudes. TheSDMindicated that the thermal ‘niche’ of the adult stage correlates with a 0–17 °C and 1–22.5 °C range, in winter and summer, respectively. As the ocean warms, the range ofA. amurensisin Australia will contract, while more southern latitudes will have conditions favourable for range expansion. Successful fertilization occurred from 3 to 23.8 °C. By day 12, development to the early larval stage was successful from 5.5 to 18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5–19.2 °C with a lower and upper critical limit of 2.6 and 20.3 °C, respectively. Our data predict thatA. amurensisfaces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Bell, James J.; Davy, Simon K.; Jones, Timothy; Taylor, Michael W.; Webster, Nicole S.;doi: 10.1111/gcb.12212
pmid: 23553821
AbstractCoral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end‐Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge‐dominated period far surpasses that of alternative stable‐ecosystem or phase‐shift states reported on modern day coral reefs and, as such, a shift to sponge‐dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral‐ to sponge‐dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature andpH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu264 citations 264 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 AustraliaPublisher:Wiley Bell, James J.; Davy, Simon K.; Jones, Timothy; Taylor, Michael W.; Webster, Nicole S.;doi: 10.1111/gcb.12212
pmid: 23553821
AbstractCoral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end‐Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge‐dominated period far surpasses that of alternative stable‐ecosystem or phase‐shift states reported on modern day coral reefs and, as such, a shift to sponge‐dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral‐ to sponge‐dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature andpH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu264 citations 264 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2023 Spain, Morocco, Germany, SwitzerlandPublisher:Wiley Funded by:EC | BIODESERT, EC | CLIMIFUNEC| BIODESERT ,EC| CLIMIFUNEduardo Moreno‐Jiménez; Fernando T. Maestre; Maren Flagmeier; Emilio Guirado; Miguel Berdugo; Felipe Bastida; Marina Dacal; Paloma Díaz‐Martínez; Raúl Ochoa‐Hueso; César Plaza; Matthias C. Rillig; Thomas W. Crowther; Manuel Delgado‐Baquerizo;pmid: 36305858
handle: 10261/282703 , 10486/706822 , 1959.7/uws:73741
AbstractSoil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 83visibility views 83 download downloads 224 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2023 Spain, Morocco, Germany, SwitzerlandPublisher:Wiley Funded by:EC | BIODESERT, EC | CLIMIFUNEC| BIODESERT ,EC| CLIMIFUNEduardo Moreno‐Jiménez; Fernando T. Maestre; Maren Flagmeier; Emilio Guirado; Miguel Berdugo; Felipe Bastida; Marina Dacal; Paloma Díaz‐Martínez; Raúl Ochoa‐Hueso; César Plaza; Matthias C. Rillig; Thomas W. Crowther; Manuel Delgado‐Baquerizo;pmid: 36305858
handle: 10261/282703 , 10486/706822 , 1959.7/uws:73741
AbstractSoil micronutrients are capital for the delivery of ecosystem functioning and food provision worldwide. Yet, despite their importance, the global biogeography and ecological drivers of soil micronutrients remain virtually unknown, limiting our capacity to anticipate abrupt unexpected changes in soil micronutrients in the face of climate change. Here, we analyzed >1300 topsoil samples to examine the global distribution of six metallic micronutrients (Cu, Fe, Mn, Zn, Co and Ni) across all continents, climates and vegetation types. We found that warmer arid and tropical ecosystems, present in the least developed countries, sustain the lowest contents of multiple soil micronutrients. We further provide evidence that temperature increases may potentially result in abrupt and simultaneous reductions in the content of multiple soil micronutrients when a temperature threshold of 12–14°C is crossed, which may be occurring on 3% of the planet over the next century. Altogether, our findings provide fundamental understanding of the global distribution of soil micronutrients, with direct implications for the maintenance of ecosystem functioning, rangeland management and food production in the warmest and poorest regions of the planet.
Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 83visibility views 83 download downloads 224 Powered bymore_vert Global Change Biolog... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2022License: CC BYRefubium - Repositorium der Freien Universität BerlinArticle . 2023License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinRepositorio Institucional de la Universidad de AlicanteArticle . 2022Data sources: Repositorio Institucional de la Universidad de AlicanteUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United Kingdom, United KingdomPublisher:Wiley Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S.; Dawson, Terence P.; Syktus, Jozef; McAlpine, Clive A.;AbstractForest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Australia, United Kingdom, United KingdomPublisher:Wiley Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S.; Dawson, Terence P.; Syktus, Jozef; McAlpine, Clive A.;AbstractForest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long‐lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed dispersal ecology, and demands a focused research effort.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 124 citations 124 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKing's College, London: Research PortalArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12869&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Jordan A. Thomson; Gary A. Kendrick; John Statton; John Statton; Michael R. Heithaus; Matthew W. Fraser; Derek A. Burkholder; James W. Fourqurean;doi: 10.1111/gcb.12694
pmid: 25145694
AbstractExtreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United StatesPublisher:Wiley Jordan A. Thomson; Gary A. Kendrick; John Statton; John Statton; Michael R. Heithaus; Matthew W. Fraser; Derek A. Burkholder; James W. Fourqurean;doi: 10.1111/gcb.12694
pmid: 25145694
AbstractExtreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu249 citations 249 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Japan, Australia, JapanPublisher:Wiley Shintaro Takao; Shintaro Takao; Masahiko Fujii; Jorge García Molinos; Jorge García Molinos; Jorge García Molinos; Hiroya Yamano; Naoki H. Kumagai; Michael T. Burrows; Elvira S. Poloczanska; Elvira S. Poloczanska;AbstractConservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient‐protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species’ climate‐driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping‐stone protection for species that must shift their distribution because of climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Japan, Australia, JapanPublisher:Wiley Shintaro Takao; Shintaro Takao; Masahiko Fujii; Jorge García Molinos; Jorge García Molinos; Jorge García Molinos; Hiroya Yamano; Naoki H. Kumagai; Michael T. Burrows; Elvira S. Poloczanska; Elvira S. Poloczanska;AbstractConservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient‐protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species’ climate‐driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping‐stone protection for species that must shift their distribution because of climate change.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, China (People's Republic of), AustraliaPublisher:Wiley Julian Caley; Stephen Mayfield; Reşit H. Akçakaya; Barry W. Brook; Bayden D. Russell; Scoresby A. Shepherd; Sean D. Connell; Damien A. Fordham; Camille Mellin; Camille Mellin; Corey J. A. Bradshaw; Corey J. A. Bradshaw; Matthew E. Aiello-Lammens;AbstractEvidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated byENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction inAOO. The strongly non‐linear relationship between abalone population size andAOOhas important ramifications for the use ofENMpredictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Australia, China (People's Republic of), AustraliaPublisher:Wiley Julian Caley; Stephen Mayfield; Reşit H. Akçakaya; Barry W. Brook; Bayden D. Russell; Scoresby A. Shepherd; Sean D. Connell; Damien A. Fordham; Camille Mellin; Camille Mellin; Corey J. A. Bradshaw; Corey J. A. Bradshaw; Matthew E. Aiello-Lammens;AbstractEvidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal‐limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate‐related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated byENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate‐dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction inAOO. The strongly non‐linear relationship between abalone population size andAOOhas important ramifications for the use ofENMpredictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source‐sink dynamics and dispersal‐limitation.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu77 citations 77 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of Hong Kong: HKU Scholars HubArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Wiley Richard G. Pearson; April E. Reside; Jeremy VanDerWal; Stephen E. Williams; Luke P. Shoo; Luke P. Shoo; Alex S. Anderson;AbstractMontane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Wiley Richard G. Pearson; April E. Reside; Jeremy VanDerWal; Stephen E. Williams; Luke P. Shoo; Luke P. Shoo; Alex S. Anderson;AbstractMontane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2012.02683.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:Wiley Ruth J. Doran; Ruth J. Doran; Gemma Woldendorp; Gemma Woldendorp; Marilyn C. Ball; Michael J. Hill; Michael J. Hill;handle: 1885/58691
AbstractAlthough plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below −8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 AustraliaPublisher:Wiley Ruth J. Doran; Ruth J. Doran; Gemma Woldendorp; Gemma Woldendorp; Marilyn C. Ball; Michael J. Hill; Michael J. Hill;handle: 1885/58691
AbstractAlthough plants are more susceptible to frost damage under elevated atmospheric [CO2], the importance of frost damage under future, warmer climate scenarios is unknown. Accordingly, we used a model to examine the incidence and severity of frost damage to snow gum (Eucalyptus pauciflora) in a sub‐alpine region of Australia for current and future conditions using the A2 IPCC elevated CO2 and climate change scenario. An existing model for predicting frost effects on E. pauciflora seedlings was adapted to include effects of elevated [CO2] on acclimation to freezing temperatures, calibrated with field data, and applied to a study region in Victoria using climate scenario data from CSIRO's Global Climate Model C‐CAM for current (1975–2004) and future (2035–2064) 30 years climate sequences. Temperatures below 0 °C were predicted to occur less frequently while the coldest temperatures (i.e. those below −8 °C) were almost as common in the future as in the current climate. Both elevated [CO2] and climate warming affected the timing and rates of acclimation and de‐acclimation of snow gum to freezing temperatures, potentially reducing the length of time that plants are fully frost tolerant and increasing the length of the growing season. Despite fewer days when temperatures fall below 0 °C in the future, with consequently fewer damaging frosts with lower average levels of impact, individual weather sequences resulting in widespread plant mortality may still occur. Furthermore, delayed acclimation due to either warming or rising [CO2] combined with an early severe frost could lead to more frost damage and higher mortality than would occur in current conditions. Effects of elevated [CO2] on frost damage were greater in autumn, while warming had more effect in spring. Thus, frost damage will continue to be a management issue for plantation and forest management in regions where frosts persist.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/58691Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2007 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1365-2486.2007.01499.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Funded by:EC | PASTFORWARD, EC | FORMICAEC| PASTFORWARD ,EC| FORMICAMichael P. Perring; Michael P. Perring; Kris Verheyen; Haben Blondeel; Pieter De Frenne; Leen Depauw; Emiel De Lombaerde; Dries Landuyt;AbstractPlant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Wiley Funded by:EC | PASTFORWARD, EC | FORMICAEC| PASTFORWARD ,EC| FORMICAMichael P. Perring; Michael P. Perring; Kris Verheyen; Haben Blondeel; Pieter De Frenne; Leen Depauw; Emiel De Lombaerde; Dries Landuyt;AbstractPlant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BelgiumPublisher:Wiley Authors: Byrne, Maria; Gall, Mailie M.L.; Wolfe, Kennedy K.D.L.; Aguera Garcia, Antonio;AbstractDue to climatic warming,Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high‐risk invader of the sub‐Antarctic and Antarctic. To assess the potential range expansion ofA. amurensisto the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adultA. amurensiswith respect to present‐day and future climate scenarios using habitat temperature data to construct species distribution models (SDMs). To integrate the physiological response of the dispersive phase, we determined the thermal envelope of larval development to assess their performance in present‐day and future thermal regimes and the potential for success ofA. amurensisin poleward latitudes. TheSDMindicated that the thermal ‘niche’ of the adult stage correlates with a 0–17 °C and 1–22.5 °C range, in winter and summer, respectively. As the ocean warms, the range ofA. amurensisin Australia will contract, while more southern latitudes will have conditions favourable for range expansion. Successful fertilization occurred from 3 to 23.8 °C. By day 12, development to the early larval stage was successful from 5.5 to 18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5–19.2 °C with a lower and upper critical limit of 2.6 and 20.3 °C, respectively. Our data predict thatA. amurensisfaces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 BelgiumPublisher:Wiley Authors: Byrne, Maria; Gall, Mailie M.L.; Wolfe, Kennedy K.D.L.; Aguera Garcia, Antonio;AbstractDue to climatic warming,Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high‐risk invader of the sub‐Antarctic and Antarctic. To assess the potential range expansion ofA. amurensisto the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adultA. amurensiswith respect to present‐day and future climate scenarios using habitat temperature data to construct species distribution models (SDMs). To integrate the physiological response of the dispersive phase, we determined the thermal envelope of larval development to assess their performance in present‐day and future thermal regimes and the potential for success ofA. amurensisin poleward latitudes. TheSDMindicated that the thermal ‘niche’ of the adult stage correlates with a 0–17 °C and 1–22.5 °C range, in winter and summer, respectively. As the ocean warms, the range ofA. amurensisin Australia will contract, while more southern latitudes will have conditions favourable for range expansion. Successful fertilization occurred from 3 to 23.8 °C. By day 12, development to the early larval stage was successful from 5.5 to 18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5–19.2 °C with a lower and upper critical limit of 2.6 and 20.3 °C, respectively. Our data predict thatA. amurensisfaces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu