- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 2. Zero hunger
- AU
- Energy Procedia
- Energy Research
- 7. Clean energy
- 13. Climate action
- 2. Zero hunger
- AU
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors:Abhijit Date;
Ashwin Date; Bavin Loganathan; Pritesh Gokhale;Abhijit Date
Abhijit Date in OpenAIREAbstract This research is conducted to determine the limiting values of the geometric concentration when used with solar thermal system (thermoelectric generator) (TEG) to maintain desired hot and cold side temperatures for power generation. Experiments were conducted to determine the optimum solar concentration (aperture area/target area) using a thermoelectric generator sandwiched between the target plate and passive heat sink. A computer model is developed to solve the energy balance equations and find the optimum values for geometric concentration. It was observed that for the single configuration of heat sink and thermoelectric generator in a system, the trend of temperature difference between the hot and cold sides remain the same at different geometric concentrations. The optimum geometric concentration is determined for heat sinks in study. It is observed that with solar radiation intensity of 800 W/m2 and heat sink fin length of 0.15m the optimum geometric concentration is 13.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Beibei Xu; Diyi Chen; Diyi Chen;M. Venkateshkumar;
+2 AuthorsM. Venkateshkumar
M. Venkateshkumar in OpenAIREBeibei Xu; Diyi Chen; Diyi Chen;M. Venkateshkumar;
Yu Xiao; Yanqiu Xing;M. Venkateshkumar
M. Venkateshkumar in OpenAIREAbstract Global primary energy consumption will continue to increase with a high rate to 2050, which will be a big challenge for countries to meet both global and regional energy demand. Pumped storage stations (PSS) integrated to a hybrid power system (HPS) with solar and wind power for China are under construction to tussle with this challenge. Historically, modeling of a PSS integrated HPS has been ignored the interaction effect between the shaft vibration and the governing strategies, which will increase the dynamic risk of PSS disconnected immediately to HPS. Here we unify the models of the hydro-turbine governing system and hydro-turbine generator units with a novel expression of hydraulic forces. We quantize all the parameter’s interaction contributions of PSS integration to HPS and validate this model with the existing models. Finally, we show the feasibility of PSS’s model in integrating of a HPS under steady and fault scenarios.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: M.M.Al Emran Hassan; Ajay Kapoor; Himani Mazumder; Mehran Ektesabi;AbstractCentre of gravity (CG) is one of the significant parameters of vehicle mass property related to vehicle handling. Position of CG in each direction (longitudinal, lateral and vertical) affects stability of the vehicle eventually. Change in CG position depends on different architectural arrangements of drive train and sub-systems which affect mass distribution of the vehicle. Being zero-emission technology, rapid commercialization of electric vehicle (EV) requires more emphasis on production of new automobiles and retrofitting as well. In case of retrofitting, placement of all EV drive train and other sub-systems requires both static and dynamic analysis for change in CG position due to different mass distributions. In this paper, analysis has been conducted by MATLAB SIMULINK based vehicle model to demonstrate effect of CG in vehicle maneuvering. Outcome of this investigation indicates the evaluation of different retrofitted EV architectures considering different mass distributions under the constraint of vehicle mass and dimension. This study evaluates vehicle performance with different architectures to ensure safe handling and stability in both normal and sudden maneuvering conditions of the vehicle.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors:Nabi, Md Nurun;
Nabi, Md Nurun
Nabi, Md Nurun in OpenAIRERasul, Mohammad G;
Rasul, Mohammad G
Rasul, Mohammad G in OpenAIREGudimetla, Prasad V;
Gudimetla, Prasad V
Gudimetla, Prasad V in OpenAIREAbstract The main objective of this study was to develop a thermodynamic model to analyse engine performance and combustion behavior of a single cylinder, four-stroke, naturally aspirated, direct injection (DI) diesel engine. The model was developed with a commercial GT-Power software. Various sub-models for different systems including intake, exhaust, fuel injection, combustion, and heat transfer rate were combined for thermodynamic analysis of engine performance and combustion behaviour. The engine rotational speed, start of injection timing and compression ratio were considered as variables. The engine rotational speeds were varied from 800 rpm to 2500 rpm, the start of injection timings was ranged from 15o crank angle (CA) before top dead centre (bTDC) to 15o CA after top dead centre (aTDC), and the compression ratios were changed from 13 to 25. Performance parameters such as indicated and brake power, brake thermal efficiency, friction, etc. and combustion parameters such as heat transfer rate and in-cylinder pressure are analysed at different engine rotational speed, injection timing, and compression ratio, and discussed accordingly. The optimum performance such as BTE, BT and BMEP were found at the engine speed of 1700 rpm, a start of injection timing of 10o bTDC, and a compression ratio of 20
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1309065Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1309065Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.219&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 AustraliaPublisher:Elsevier BV Authors: Clements, Lachlan;Chowdhury, Ashfaque A;
Chowdhury, Ashfaque A
Chowdhury, Ashfaque A in OpenAIREAbstract Renewable energies are getting progressively widespread due to the growing worry of carbon discharges. There has been a substantial volume of advancement being made in renewable energy sources. One of the remarkable ones is wind power. The common myths of building a wind turbine in highways suburban, and coastal areas are the extent of the machine, and the turbulence may affect the performance of the turbine that ultimately may uncover a poor return on investment. In this paper, some laboratory testing was performed on a conventional turbine and a wind lens turbine to determine if there are any potential applications for the Wind lens turbines in a turbulent environment. Highways, coastal and suburban areas may prove appropriate for this kind of turbine. However, there is still additional analysis required on the effects that these turbines may have on local fauna migration patterns. It is also important to check if the noise pollution generated by the wind lens turbines are enough to cause disruption. Two different types of edges were also embraced to see whether performance in such a location relies more on blade type than the design of the turbine. From the testing in a lab-scale wind tunnel, it was found that on average the wind lens design provided a 40% increase in efficiency both in the Betz coefficient and tip speed ratio of the turbine. However, the wind lens turbine requires further assessment to determine its suitability in environments not exposed to constant wind currents such as highways. There is a possibility that the wind lens turbine can be applied in a turbulent setting with further assessment and enhancements to the manufacturing process of the turbine models.
aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1321434Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert aCQUIRe CQUniversity arrow_drop_down aCQUIRe CQUniversityArticle . 2019License: CC BY NC NDFull-Text: http://hdl.cqu.edu.au/10018/1321434Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Yang Li-na; Niu Shuwen; Zhang Xifeng; Luo Guang-hua;AbstractIt is important to develop solar energy resource potential for improving indoor thermal comfort. In this paper, we used the statistical method to analyze observation data for temperature change in an elementary school classroom located in the clod region. The temperature data are recorded hourly in outdoor, the sunspace attached (SA), the classroom with a SA, and the reference classroom (RC) respectively. Results show that the daily mean temperature of the classroom with a sunspace attached (CAS) is higher 6.6°C than RC in the heating period. The heating effect of the sunspace is obvious during the day, while a lot of heat loses at night. To reach the indoor suitable temperature of 16°C, the fuel 315.51kgce are required, and only 61.1% of the heating requirement of the classroom are met. In order to increase the heat effect of SA, it is essential to improve the structure of the sunspace and building material properties.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.12.1075&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV AbstractThis study investigates the impact of current steel lintels on the CO2 emissions of a notional building when trying to comply with the new PART L1A 2013 of the Building Regulations of England and Wales. For this purpose different families of lintels were assessed under SAP2009 using 12 different cavity walls with U-value under 0.18W/m2K. Any of the current steel lintels without base plate studied in this research were found to be useable under PART L1A 2013. Their impact, depending also upon the construction detail used, could vary from 3% to 0.7% of the DFEES and from 1.6 to 0.4% of the DER of the notional building here studied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.391&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Caixia Wang; Caixia Wang; Enshen Long; Wenjing Chen; Xuefeng Liu; Jianlei Niu; Jianlei Niu;Guanyu Fang;
Shiming Deng;Guanyu Fang
Guanyu Fang in OpenAIREAbstract In disaster relief reconstructions, the severe indoor thermal environment of the prefabricated temporary house (PTH) limits its massive utilization. Here, the application of phase change material energy storage system (PESS) has been proposed in the full-scale experimental PTH. In the experimental investigations, a movable PESS was designed aiming at regulating the indoor environment of the PTH during the daytime in hot summer, by charging the cool energy during the nighttime. The movable PESS revealed positive impacts on the indoor environment regulation in the experimental PTH. In addition, the distance between the PESS and the west wall also had influences on the cool energy discharging of the PESS and the indoor thermal environment of the experimental PTH.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.01.722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: José Antonio Almendros-Ibáñez; María Asunción Izquierdo Barrientos;David Rodriguez-Sanchez;
Gary Rosengarten; +2 AuthorsDavid Rodriguez-Sanchez
David Rodriguez-Sanchez in OpenAIREJosé Antonio Almendros-Ibáñez; María Asunción Izquierdo Barrientos;David Rodriguez-Sanchez;
Gary Rosengarten; Antonio Enrique Molina Navarro;David Rodriguez-Sanchez
David Rodriguez-Sanchez in OpenAIREJuan Francisco Belmonte Toledo;
Juan Francisco Belmonte Toledo
Juan Francisco Belmonte Toledo in OpenAIREAbstractOne of the problems with solar flat plate collectors for domestic water heating is that they produce more energy in the summer months, when the domestic hot water needs are lower than in winter months. This causes a significant difference between supply and demand and thus overheating during the summer. A method to avoid this problem is to design solar collector fields that offer a 100% of the water needs in the summer, but a small percentage during the winter, which is certainly not ideal.In this work, ray tracing is used to design a solar thermal collector that offers a more uniform production during the year. A novel geometry is chosen where the collector is split in two parts, a curved absorber and a mini parabolic concentrator. The concentrator is designed to concentrate the radiation during the midday hours of winter days and to not doing it in the midday hours of summer days. This increases the energy produced in winter and prevents the installation from overheating.In order to study the hours when this geometry will concentrate the solar radiation, ray tracing is used. As the solar collector has a design that allows the collector to be easily integrated into a facade, the simulations in the most useful architectural integration positions are simulated, those are horizontal positions, but vertical positions or any other position are suitable if the collector is installed on a roof.For each position, the amount of hours where the whole collector is working and the total radiation captured are calculated and compared with the solar radiation captured by an equivalent flat surface, which would corresponds to conventional flat plate collectors.Simulation results shows how for a concentrator designed to work properly in the 5 midday hours during the winter solstice it will not work during the 5 midday hours during the summer solstice, avoiding overheating.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.10.189&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Globally diesel generator sets account for the majority of generation into remote and off-grid power systems. While diesel generation has proven to be a reliable and accessible technology, its downside involves the expense and environmentally emissions linked to diesel fuel consumption. In response diesel generation alternatives are becoming available and cost competitive, via the integration of renewable energy technology (RET). Hybrid power systems (HPS), those adopting both diesel and RET are increasingly employed to reduce cost and environmental emissions. As RET penetration increases within HPS a potential conflict arises, with diesel generation unable to lower output below minimum load set points. These load set points are predetermined to ensure engine efficiency and reliability. Under medium to high renewable penetration, diesel load set points compete with renewable generation to produce surplus energy. This surplus energy must be absorbed by the system. Various ancillary technologies, such as demand management, energy storage and dump loads can perform this role; however such technologies are expensive and complex. This paper introduces low load diesel (LLD) as one solution to minimising surplus generation within HPS. Economic and power modelling is used to explore removal of energy storage (ES) under LLD application. Model validation, undertaken against both kW and MW scale operational diesel generator data sets is referenced to support the conclusion, that LLD is cable of reducing both system establishment and operational costs for medium to high RET penetration HPS.
Energy Procedia arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Procedia arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu