- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- 7. Clean energy
- MY
- BD
- Energy Research
- Open Access
- Open Source
- 7. Clean energy
- MY
- BD
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Lukman Noerochim; Elsanti Anggraini Gunawan; Sungging Pintowantoro; Haniffudin Nurdiansah; +2 AuthorsLukman Noerochim; Elsanti Anggraini Gunawan; Sungging Pintowantoro; Haniffudin Nurdiansah; Ariiq Dzurriat Adam; Nurul Hayati Idris;LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) cathodes were synthesized via the co-precipitation method and continued with the calcination process in a tube furnace at 750 °C under flowing oxygen gas for 12 h. X-ray diffraction (XRD) revealed a well-formed and high-purity phase with a hexagonal structure. LiNi0.9Mn0.07Al0.03O2 (NMA 973) had the best electrochemical performance with the lowest redox peak separation, the smallest charge transfer resistance (71.58 Ω cm−2), the highest initial specific discharge capacity of 172 mAh g−1 at 0.1C, and a capacity retention of 98% after 100 cycles. Under high current density at 1 C, NMA 973 had excellent specific discharge capacity compared to the other samples. The optimal content of Mn and Al elements is a crucial factor to obtain the best electrochemical performance of NMA. Therefore, NMA 973 is a promising candidate as a cathode for high-energy-density lithium-ion batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:Elsevier BV Muhammad Nihal Naseer; Asad A. Zaidi; Hamdullah Khan; Sagar Kumar; Muhammad Taha bin Owais; Juhana Jaafar; Nuor Sariyan Suhaimin; Yasmin Abdul Wahab; Kingshuk Dutta; Muhammad Asif; S.F. Wan Muhamad Hatta; Muhammad Uzair;Microbial fuel cell (MFC) has received much attention in the last decade as a promising technology to simultaneously generate electricity and decontaminate wastewater. This study aims to quantitatively review the published literature on MFC, published in the period of 1970–2020, based on the Web of Science (WoS) database. For the first time in literature, a comprehensive quantitative review of MFC has been conducted by employing the technique of bibliometric and content analyses. A total of 11,397 publications have been retrieved from WoS, out of which 81.6% are research articles. The evaluation in the field of MFC has been mapped in various categories, such as publication history, publication distribution, subject category distribution, leading journals, leading countries and leading organizations in MFC research. Additionally, content analysis has been conducted to unearth the research trends in MFC; and some hot research topics in MFC have been spotted. Results depict that the period 2011–2020 has been the most appreciating era for MFC research, as it contributed 87% of the total publications. Among the subject categories, energy fuel and microbiology lead with contributions of 26.5% for each, butthe overall growth of the energy fuel category in the last decade has been the highest. Out of 1,147 journals publishing MFC research, Bioresource Technology is the leading one; and countries like China, USA and India are the main hub of MFC research with 26.47%, 16.95% and 7.69% contributions in publications, respectively. The hottest topics in MFC research are nanoparticles, catalysts, air electrodes, graphene electrodes, power enhancement, air cathode and nitrogen removal. Moreover, major research areas are engineering, energy fuels and biotechnology with each contribution 26.5% of the total publications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.06.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.06.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Authors: Abdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; +5 AuthorsAbdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; Mohamad Ramadan; Mohamad Ramadan; Abdul Hai Alami; Abdul Hai Alami; Nabila Shehata;With the fast growth of the global economy, energy supply and demand have a strong impact on social, economic, and environmental aspects. As a consequence, this has pushed the decision-makers to formulate objectives, guiding economic policies toward sustainable goals. The process is known as Sustainable Development Goals (SDGs) that have been proposed by the United Nations. This being said, the energy sector is a vital domain with a vast potential for improvments in terms of technologies and ligistalations. Solar energy is among the most efficient solutions proposed to reduce the economic and environmental footprints of energy. In this frame, the current paper aims to localize solar energy within SDGs and analyze the contribution of the solar energy towards the achievement of the SDGs. Moreover, the current work highlights the contributions of Mohammed bin Rashid Al Maktoum (MBR) Solar Park in the United Arab Emirates to achieving the SDGs. Indeed, the MBR Solar Park concept offers valuable insights of environmental impacts by deploying clean and affordable energy sources in place of conventional fossil fuel power plants that are still heavily used in the region. The MBR Solar Park operation has already mitigated 6.5 million tonnes of carbon dioxide equivalent and this number will likely rise when all phases are installed and operational. Moreover, it has been shown that MBR Solar Park achieve several SDGs such SDG 8: decent work and economic growth, SDG 9: industry, innovation and infrastructure, SDG 11: sustainable cities and communities, and SDG 15: life on land.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Hussein A. Mahmood; Nor Mariah. Adam; B. B. Sahari; S. U. Masuri;doi: 10.3390/en10091373
Several studies have aimed to convert diesel engines to dual- or tri-fuel engines to improve their fuel economy and reduce the emissions from diesel engine, however, most of these studies do not consider enhancing the homogeneity of fuel mixtures inside the engine and accurately controlling the air fuel ratio. In this study, a new air-fuel mixer was designed, manufactured and tested. The proposed air-gaseous fuel mixer design was conceived to be suitable for mixing air with compressed natural gas (CNG) and a blend of hydrogen and compressed natural gas (HCNG) that gives homogenous mixtures with high uniformity index and also to be easily connected with an Electronic Control Unit (ECU) for controlling accurately the air-gaseous fuel ratio for different engine speeds. For optimizing the homogeneity inside the new mixer, fourteen different mixer models were created to investigate the effects of diameter, location, and the number of holes inside the mixer on the homogeneity and distribution of the mixtures. Computational fluid dynamics analysis software was used to check the flow behavior, distribution and homogeneity of mixtures inside the new mixer models. The simulation results revealed that the best uniformity index (UI) values are obtained in model 7 where the UI values are 0.939 and 0.937, respectively, for an air fuel ratio for a blend of hydrogen and compressed natural gas (AFRHCNG) = 51.31 and the air fuel ratio for compressed natural gas (AFRCNG) = 34.15. According to the numerical and experimental results for the new mixer (model 7) under different engine speeds (1000–4000) and air-CNG ratio of 34.15, a meaningful agreement is reached between the experimental and numerical values for AFRCNG (coefficient of determination (R2) = 0.96 and coefficient of variation (CoV) = 0.001494).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Amged Al Ezzi; Miqdam T. Chaichan; Hasan S. Majdi; Ali H. A. Al-Waeli; Hussein A. Kazem; Kamaruzzaman Sopian; Mohammed A. Fayad; Hayder A. Dhahad; Talal Yusaf;doi: 10.3390/en15113870
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 MalaysiaPublisher:Royal Society of Chemistry (RSC) Authors: Sazzad, B.S.; Fazal, M.A.; Haseeb, A.S. Md. Abdul; Masjuki, Haji Hassan;doi: 10.1039/c6ra10016c
In the automobile sector, biodiesel has received considerable attention as a promising diesel substitute because of its enhanced lubricity and reduced emissions.
RSC Advances arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra10016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RSC Advances arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra10016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Muhamad Irwanto; Ismail Daut; I. Safwati; M. Fitra; Y.M. Irwan; N. Gomesh;AbstractThe increment of energy costs and decreasing prices of turbines generator and photovoltaic (PV) panels caused photovoltaic/wind hybrid system (PWHS) utilization is becoming popular. This paper presents a new topology of PWHS. It is consists of two main parts: the cooling system for photovoltaic module and the combination method of Savonius and Darrieus for wind turbine. The PWHS is installed in front of Centre of Excellence for Renewable Energy (CERE), University Malaysia Perlis, Northern Malaysia. The main energy source of this system is gain from PV array and wind power generation. It is well known that the power and efficiency of photovoltaic (PV) module usually falls at the rate of ∼0.5%/°C and ∼0.05%/°C respectively as increase of ambient temperature. The electrical efficiency of PV cell depends on its operating temperature during absorption of solar radiation. For this reason, an active PV cooling system was design using the DC brushless fan with inlet/outlet manifold for uniform airflow distribution. It was attached at the back of the PV panel. Where else, the improvement of wind is using Vertical Axis Hybrid Wind Turbine (VAWT) through the combination method of Savonius and Darrieus types. From the results, it shows that the improvement of PWHS give the big advantages in term of supply the energy in Perlis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Keyi Duan; Mingyao Cao; Nurhafiza Abdul Kader Malim;doi: 10.3390/su141610308
In recent years, the global economy has become more closely related among countries, and people’s pursuit of economic growth has caused the destruction of the environment. This paper selected panel data from 30 provinces in China from 1997 to 2020 to investigate the dynamic relationship between trade liberalization, financial development and carbon dioxide emissions by constructing a PVAR model. We also consider technology as an important variable for studying the effect on carbon dioxide emissions. We draw the following conclusions. First, financial development promotes carbon dioxide emissions, while trade liberalization has no significant impact on carbon dioxide emissions. Second, China’s trade liberalization promotes financial development, which has limited support for international trade. Third, there is a two-way causal relationship between financial development and carbon dioxide emissions, and there is also a two-way causal relationship between trade liberalization and financial development. Finally, there is a significant inverted “U” curve relationship between trade liberalization and innovation efficiency, environmental regulation and innovation. According to the results, we believe that openness to trade impacts emissions of carbon dioxide, opening a new function path: namely, trade openness and financial development result in high carbon dioxide emissions; consequently, China has relied on this process in the development of their financial system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Ismail Muhammad Nasir; Tinia Idaty Mohd Ghazi; Rozita Omar;This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up‐flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one‐ and two‐stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time.
Engineering in Life ... arrow_drop_down Engineering in Life SciencesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/elsc.201100150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 253 citations 253 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Engineering in Life ... arrow_drop_down Engineering in Life SciencesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/elsc.201100150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Authors: Nur Nazartul Ainna Nazarudin; Ernie Mat Tokit; Mohd Afzanizam Mohd Rosli; Fatimah Al Zahrah Mohd Sa’at; +2 AuthorsNur Nazartul Ainna Nazarudin; Ernie Mat Tokit; Mohd Afzanizam Mohd Rosli; Fatimah Al Zahrah Mohd Sa’at; Safarudin Gazali Herawan; Said Ibnu Abi Syahputra;Abstract Finite Element Analysis is commonly used for product designer to visualize the structural analysis of a product. Not much works done by these designers using Computational Fluid Dynamic, CFD due to the complexity of the application. In this study, the dynamic of the water flow within the turbine had been predicted as the preliminary design steps. Several significant parameters had been reviewed and tested using CFD tool to give better insight of the important components of the turbine on its performance, in terms of the velocity, the pressure and the vorticity of the water. Three different velocities were used which was 5 m/s, 9.9 m/s and 13 m/s. The maximum outlet velocity that can be produced at various inlet velocity were predicted to be 17.09 m/s, 33.79 m/s, and 44.37 m/s. The pressure gradients were 159 kPa, 618 kPa, and 107 kPa. Meanwhile, the vorticities were 48.28 m/s, 91.66 m/s, and 120.5 m/s. Furthermore, the vorticity distribution was observed through the simulated work.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/998/1/012014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/998/1/012014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Lukman Noerochim; Elsanti Anggraini Gunawan; Sungging Pintowantoro; Haniffudin Nurdiansah; +2 AuthorsLukman Noerochim; Elsanti Anggraini Gunawan; Sungging Pintowantoro; Haniffudin Nurdiansah; Ariiq Dzurriat Adam; Nurul Hayati Idris;LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) cathodes were synthesized via the co-precipitation method and continued with the calcination process in a tube furnace at 750 °C under flowing oxygen gas for 12 h. X-ray diffraction (XRD) revealed a well-formed and high-purity phase with a hexagonal structure. LiNi0.9Mn0.07Al0.03O2 (NMA 973) had the best electrochemical performance with the lowest redox peak separation, the smallest charge transfer resistance (71.58 Ω cm−2), the highest initial specific discharge capacity of 172 mAh g−1 at 0.1C, and a capacity retention of 98% after 100 cycles. Under high current density at 1 C, NMA 973 had excellent specific discharge capacity compared to the other samples. The optimal content of Mn and Al elements is a crucial factor to obtain the best electrochemical performance of NMA. Therefore, NMA 973 is a promising candidate as a cathode for high-energy-density lithium-ion batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/batteries9080420&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:Elsevier BV Muhammad Nihal Naseer; Asad A. Zaidi; Hamdullah Khan; Sagar Kumar; Muhammad Taha bin Owais; Juhana Jaafar; Nuor Sariyan Suhaimin; Yasmin Abdul Wahab; Kingshuk Dutta; Muhammad Asif; S.F. Wan Muhamad Hatta; Muhammad Uzair;Microbial fuel cell (MFC) has received much attention in the last decade as a promising technology to simultaneously generate electricity and decontaminate wastewater. This study aims to quantitatively review the published literature on MFC, published in the period of 1970–2020, based on the Web of Science (WoS) database. For the first time in literature, a comprehensive quantitative review of MFC has been conducted by employing the technique of bibliometric and content analyses. A total of 11,397 publications have been retrieved from WoS, out of which 81.6% are research articles. The evaluation in the field of MFC has been mapped in various categories, such as publication history, publication distribution, subject category distribution, leading journals, leading countries and leading organizations in MFC research. Additionally, content analysis has been conducted to unearth the research trends in MFC; and some hot research topics in MFC have been spotted. Results depict that the period 2011–2020 has been the most appreciating era for MFC research, as it contributed 87% of the total publications. Among the subject categories, energy fuel and microbiology lead with contributions of 26.5% for each, butthe overall growth of the energy fuel category in the last decade has been the highest. Out of 1,147 journals publishing MFC research, Bioresource Technology is the leading one; and countries like China, USA and India are the main hub of MFC research with 26.47%, 16.95% and 7.69% contributions in publications, respectively. The hottest topics in MFC research are nanoparticles, catalysts, air electrodes, graphene electrodes, power enhancement, air cathode and nitrogen removal. Moreover, major research areas are engineering, energy fuels and biotechnology with each contribution 26.5% of the total publications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.06.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2021.06.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Authors: Abdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; +5 AuthorsAbdul Ghani Olabi; Maryam Nooman AlMallahi; Mohammad Ali Abdelkareem; Khaled Obaideen; Mohamad Ramadan; Mohamad Ramadan; Abdul Hai Alami; Abdul Hai Alami; Nabila Shehata;With the fast growth of the global economy, energy supply and demand have a strong impact on social, economic, and environmental aspects. As a consequence, this has pushed the decision-makers to formulate objectives, guiding economic policies toward sustainable goals. The process is known as Sustainable Development Goals (SDGs) that have been proposed by the United Nations. This being said, the energy sector is a vital domain with a vast potential for improvments in terms of technologies and ligistalations. Solar energy is among the most efficient solutions proposed to reduce the economic and environmental footprints of energy. In this frame, the current paper aims to localize solar energy within SDGs and analyze the contribution of the solar energy towards the achievement of the SDGs. Moreover, the current work highlights the contributions of Mohammed bin Rashid Al Maktoum (MBR) Solar Park in the United Arab Emirates to achieving the SDGs. Indeed, the MBR Solar Park concept offers valuable insights of environmental impacts by deploying clean and affordable energy sources in place of conventional fossil fuel power plants that are still heavily used in the region. The MBR Solar Park operation has already mitigated 6.5 million tonnes of carbon dioxide equivalent and this number will likely rise when all phases are installed and operational. Moreover, it has been shown that MBR Solar Park achieve several SDGs such SDG 8: decent work and economic growth, SDG 9: industry, innovation and infrastructure, SDG 11: sustainable cities and communities, and SDG 15: life on land.
International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 154 citations 154 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ThermofluidsArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijft.2021.100123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Hussein A. Mahmood; Nor Mariah. Adam; B. B. Sahari; S. U. Masuri;doi: 10.3390/en10091373
Several studies have aimed to convert diesel engines to dual- or tri-fuel engines to improve their fuel economy and reduce the emissions from diesel engine, however, most of these studies do not consider enhancing the homogeneity of fuel mixtures inside the engine and accurately controlling the air fuel ratio. In this study, a new air-fuel mixer was designed, manufactured and tested. The proposed air-gaseous fuel mixer design was conceived to be suitable for mixing air with compressed natural gas (CNG) and a blend of hydrogen and compressed natural gas (HCNG) that gives homogenous mixtures with high uniformity index and also to be easily connected with an Electronic Control Unit (ECU) for controlling accurately the air-gaseous fuel ratio for different engine speeds. For optimizing the homogeneity inside the new mixer, fourteen different mixer models were created to investigate the effects of diameter, location, and the number of holes inside the mixer on the homogeneity and distribution of the mixtures. Computational fluid dynamics analysis software was used to check the flow behavior, distribution and homogeneity of mixtures inside the new mixer models. The simulation results revealed that the best uniformity index (UI) values are obtained in model 7 where the UI values are 0.939 and 0.937, respectively, for an air fuel ratio for a blend of hydrogen and compressed natural gas (AFRHCNG) = 51.31 and the air fuel ratio for compressed natural gas (AFRCNG) = 34.15. According to the numerical and experimental results for the new mixer (model 7) under different engine speeds (1000–4000) and air-CNG ratio of 34.15, a meaningful agreement is reached between the experimental and numerical values for AFRCNG (coefficient of determination (R2) = 0.96 and coefficient of variation (CoV) = 0.001494).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10091373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Amged Al Ezzi; Miqdam T. Chaichan; Hasan S. Majdi; Ali H. A. Al-Waeli; Hussein A. Kazem; Kamaruzzaman Sopian; Mohammed A. Fayad; Hayder A. Dhahad; Talal Yusaf;doi: 10.3390/en15113870
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113870&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 MalaysiaPublisher:Royal Society of Chemistry (RSC) Authors: Sazzad, B.S.; Fazal, M.A.; Haseeb, A.S. Md. Abdul; Masjuki, Haji Hassan;doi: 10.1039/c6ra10016c
In the automobile sector, biodiesel has received considerable attention as a promising diesel substitute because of its enhanced lubricity and reduced emissions.
RSC Advances arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra10016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RSC Advances arrow_drop_down University of Malaya: UM Institutional RepositoryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ra10016c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Muhamad Irwanto; Ismail Daut; I. Safwati; M. Fitra; Y.M. Irwan; N. Gomesh;AbstractThe increment of energy costs and decreasing prices of turbines generator and photovoltaic (PV) panels caused photovoltaic/wind hybrid system (PWHS) utilization is becoming popular. This paper presents a new topology of PWHS. It is consists of two main parts: the cooling system for photovoltaic module and the combination method of Savonius and Darrieus for wind turbine. The PWHS is installed in front of Centre of Excellence for Renewable Energy (CERE), University Malaysia Perlis, Northern Malaysia. The main energy source of this system is gain from PV array and wind power generation. It is well known that the power and efficiency of photovoltaic (PV) module usually falls at the rate of ∼0.5%/°C and ∼0.05%/°C respectively as increase of ambient temperature. The electrical efficiency of PV cell depends on its operating temperature during absorption of solar radiation. For this reason, an active PV cooling system was design using the DC brushless fan with inlet/outlet manifold for uniform airflow distribution. It was attached at the back of the PV panel. Where else, the improvement of wind is using Vertical Axis Hybrid Wind Turbine (VAWT) through the combination method of Savonius and Darrieus types. From the results, it shows that the improvement of PWHS give the big advantages in term of supply the energy in Perlis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.07.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Keyi Duan; Mingyao Cao; Nurhafiza Abdul Kader Malim;doi: 10.3390/su141610308
In recent years, the global economy has become more closely related among countries, and people’s pursuit of economic growth has caused the destruction of the environment. This paper selected panel data from 30 provinces in China from 1997 to 2020 to investigate the dynamic relationship between trade liberalization, financial development and carbon dioxide emissions by constructing a PVAR model. We also consider technology as an important variable for studying the effect on carbon dioxide emissions. We draw the following conclusions. First, financial development promotes carbon dioxide emissions, while trade liberalization has no significant impact on carbon dioxide emissions. Second, China’s trade liberalization promotes financial development, which has limited support for international trade. Third, there is a two-way causal relationship between financial development and carbon dioxide emissions, and there is also a two-way causal relationship between trade liberalization and financial development. Finally, there is a significant inverted “U” curve relationship between trade liberalization and innovation efficiency, environmental regulation and innovation. According to the results, we believe that openness to trade impacts emissions of carbon dioxide, opening a new function path: namely, trade openness and financial development result in high carbon dioxide emissions; consequently, China has relied on this process in the development of their financial system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Wiley Authors: Ismail Muhammad Nasir; Tinia Idaty Mohd Ghazi; Rozita Omar;This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up‐flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one‐ and two‐stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time.
Engineering in Life ... arrow_drop_down Engineering in Life SciencesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/elsc.201100150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 253 citations 253 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Engineering in Life ... arrow_drop_down Engineering in Life SciencesArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/elsc.201100150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:IOP Publishing Authors: Nur Nazartul Ainna Nazarudin; Ernie Mat Tokit; Mohd Afzanizam Mohd Rosli; Fatimah Al Zahrah Mohd Sa’at; +2 AuthorsNur Nazartul Ainna Nazarudin; Ernie Mat Tokit; Mohd Afzanizam Mohd Rosli; Fatimah Al Zahrah Mohd Sa’at; Safarudin Gazali Herawan; Said Ibnu Abi Syahputra;Abstract Finite Element Analysis is commonly used for product designer to visualize the structural analysis of a product. Not much works done by these designers using Computational Fluid Dynamic, CFD due to the complexity of the application. In this study, the dynamic of the water flow within the turbine had been predicted as the preliminary design steps. Several significant parameters had been reviewed and tested using CFD tool to give better insight of the important components of the turbine on its performance, in terms of the velocity, the pressure and the vorticity of the water. Three different velocities were used which was 5 m/s, 9.9 m/s and 13 m/s. The maximum outlet velocity that can be produced at various inlet velocity were predicted to be 17.09 m/s, 33.79 m/s, and 44.37 m/s. The pressure gradients were 159 kPa, 618 kPa, and 107 kPa. Meanwhile, the vorticities were 48.28 m/s, 91.66 m/s, and 120.5 m/s. Furthermore, the vorticity distribution was observed through the simulated work.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/998/1/012014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/998/1/012014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu