- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- 11. Sustainability
- 6. Clean water
- BD
- English
- Energy Research
- 7. Clean energy
- 13. Climate action
- 11. Sustainability
- 6. Clean water
- BD
- English
description Publicationkeyboard_double_arrow_right Article 2018Publisher:WIP Authors: Mamunur Rahaman; Mohaimenul Islam; Arbab Chowdhury; Md. Mosaddequr Rahman;In recent days CZTS based thin film solar cells have attracted much attention due to their favorable electrical and optical properties, low cost and non-toxicity. A maximum laboratory efficiency of 10-12% has been reported for these types of cells. As the cells are subjected to much higher temperatures during outdoor operation, it is important to understand how CZTS cells will perform outdoor. This work investigates the effect of varying temperature on the different components of the dark current, as well as their effects on the cell performance. Among the different components of the dark current, trap-assisted tunneling recombination, thermionic emission and interface recombination are found to have significant contribution to the dark current while thermionic emission is found to be the dominating loss mechanism at high temperature. A calculation of cell efficiency at different temperatures show that the cell efficiency decreases from about 16.3% at 0°C to about only 7.3% at 75 °C. 35th European Photovoltaic Solar Energy Conference and Exhibition; 899-902
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/35theupvsec20182018-3bv.2.34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/35theupvsec20182018-3bv.2.34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 2017 Italy, Italy, Germany, United Kingdom, United Kingdom, France, United Kingdom, Germany, United Kingdom, Italy, United KingdomPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAndrea Bocci; Adomas Jelinskas; Vasiliki A Mitsou; Ryunosuke Iguchi; Teresa Lenz; Srinivasan Rajagopalan; Axel König; Markus Nordberg; Jos Vermeulen; Antonio Policicchio; Louis Helary; Bartosz Sebastian Dziedzic; Johannes Erdmann; Caterina Doglioni; Fernando Barreiro; Stefan Schlenker; Kunihiro Nagano; Tulin Varol; Alexander Khodinov; Brian Alexander Long; Eckhard von Toerne; Edisher Tskhadadze; Scott Snyder; Geert-Jan Besjes; Dms Sultan; Richard Nickerson; Hector De la Torre; David Hohn; Liza Mijović; Sebastien Prince; Anjishnu Bandyopadhyay; Carlo Varni; Tony Doyle; Arthur James Horton; Maximiliano Sioli; Urmila Soldevila; Marcia Begalli; Bruce Barnett; Tomas Slavicek; Elizabeth Brost; Alexander Zaitsev; Matteo Franchini; Yohei Yamaguchi; S. R. Hou; Blake Burghgrave; Trygve Buanes; Alvaro Lopez Solis; Yuri Kulchitsky; Michael Begel; Dilia Maria Portillo Quintero; Marco Milesi; Simon Berlendis; Olivier Le Dortz; Yoshiji Yasu; Antonio Limosani; Kun Liu; Mario Lassnig; Emily Nurse; Alessandro Cerri; Kaushik De; Maximilian Hils; Bogdan Malaescu; Yosuke Takubo; M. Franklin; Jacob Searcy; Nicolas Viaux Maira; Michael Rijssenbeek; Tairan Xu; Christian Weiser; Claire Gwenlan; Steve McMahon; Matthew Berg Epland; Edward Moyse; Michael David Werner; Jie Yu; Jorge Lopez; David Lynn; Borut Paul Kerševan; Martin Spousta; Clara Troncon; Jing Wang; Giacinto Piacquadio; Karel Smolek; Fabio Cerutti; Dimitrios Iliadis; Xiandong Zhao; Peter van Gemmeren; Stamatios Gkaitatzis; Sergei Chekanov; Tsz Yu Ng; Yoav Afik; David Francis; Ralf Hertenberger; Michael Adersberger; Maia Mosidze; David Vazquez Furelos; Vincent Pascuzzi; Andreas Petridis; Timothy Barklow; Nurcan Ozturk; Debarati Roy; Simonetta Gentile; Shuwei Ye; Wenhao Xu; Laurent Vacavant; Sabrina Sacerdoti; Stewart Martin-Haugh; Peter Krieger; Cunfeng Feng; Hasko Stenzel; Rui Zhang; Hal Evans; Angela Maria Burger; Mykhailo Lisovyi; Robert Richter; Rajaa Cherkaoui El Moursli; Matteo Negrini; Pavol Strizenec; Asma Hadef; C. Haber; Sabrina Groh; Andrea Rodriguez Perez; William Joseph Johnson; Koji Terashi; Mirkoantonio Casolino; James Ferrando; Jennifer Kathryn Roloff; Emma Torró Pastor; Piotr Andrzej Janus; Attila Krasznahorkay; P. Sinervo; Gabriella Gaudio; Shunichi Akatsuka; R. D. Kass; Alexander Cheplakov; Ping-Kun Teng; Cyril Becot; Haonan Lu; Phillip Gutierrez; Andrea Ventura; Nikolai Fomin; Dominic Hirschbuehl; Yun-Ju Lu; Cristian Stanescu; Francisca Garay Walls; Kuan-yu Lin; Baojia Tong; Huan Ren; Tomas Davidek; Stefan Kluth; Mikhail Ivanovitch Gostkin; Kilian Rosbach; James Robinson; Werner Wiedenmann; Stephanie Majewski; Michael Düren; Noemi Calace; Aaron James Armbruster; Anatoly Kozhin; Petr Gallus; Huacheng Cai; Katsufumi Sato; Pawel Malecki; Andrea Sansoni; Chiao-ying Lin; Attilio Picazio; Monika Wielers; Sarah Williams; Regina Moles-Valls; Frank Winklmeier; Ljiljana Simic; Boris Lemmer; Stephen Lloyd; Jane Cummings; Eric Hayato Takasugi; Wendy Taylor; Antonio Onofre; Dmitriy Maximov; Felix Mueller; Katharina Schleicher; Elisabetta Vilucchi; Qun Ouyang; Deepak Kar; Nacim Haddad; German D Carrillo-Montoya; Sina Bahrasemani; Masahiro Kuze; Harinder Singh Bawa; Daniel Joseph Antrim; Carl Jeske; Rebecca Anne Linck; Paolo Francavilla; Ruchi Gupta; Kristof Schmieden; Federico Lasagni Manghi; Sergey Denisov; Alexander Kupco; Ian Connelly; Peter Watkins; Giuliano Gustavino;handle: 2434/587222 , 11571/1270926 , 2108/197596
A measurement of the production of three isolated photons in proton–proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{−1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system. Physics letters / B 781, 55 - 76 (2018). doi:10.1016/j.physletb.2018.03.057 Published by North-Holland Publ., Amsterdam
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Taylor's University Authors: M. F. I. AL IMAM; MOHD. RAFIQUL ALAM BEG; M. S. RAHMAN;In this study, the performance of a photovoltaic-thermal solar collector with compound parabolic collector for clear day in winter and summer season was investigated. Phase change material storage unit, compound parabolic collector unit, photovoltaic thermal unit were integrated into one piece to reduce the area to get higher performance and better concentration ratio. The performance of water flow rate, heat removal factor, amount of energy storage of the collector in winter season and comparison of temperature variation, total generated energy, performance factor in summer season by varying different parameters were evaluated. Water flow rate increases up to 0.004 kg/s corresponding to the thermal efficiency of around 42%. Heat removal factor for thermal collector was in the range of 0.94-0.96, which indicates better energy gain of the system and effective outlet water temperature was found 55 0C in winter season. The total generated thermal energy 1500W and maximum performance factor of a collector was 0.0135 kW-1m2 in summer season. Finally total efficiency of a collector varies from 58% -68% in summer season.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::901f2db286be18b9ae53d5bbdacf93a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::901f2db286be18b9ae53d5bbdacf93a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Authors: Ashfaqur Rahman; Md. Imran Hossain; G.M. Sharif Ullah Al-Mamun; Ahmed Anik Atik; +4 AuthorsAshfaqur Rahman; Md. Imran Hossain; G.M. Sharif Ullah Al-Mamun; Ahmed Anik Atik; Md. Rokib Hasan; Al Jubair Hossain; Sokhorio Margon D'Costa; A.S.M. Shakil Imam;The renewable energy sources like wind and solar energies can be combined to increase the total power generation and thereby increase the efficiency of the system. The combination also provides a means to overcome the intermittent nature of the solar and wind renewable energy sources, since one source can be used for power generation when other is not available. AC-DC converters are used convert the alternating voltage of the wind generator to a constant DC value which can be used to charge the batteries or later converted to AC voltage to drive AC loads. A Maximum Power Point Tracking (MPPT) system using boost converter is designed to extract maximum possible power from the sun when it is available. This method provides better harmonic reduction since Harmonic content is detrimental for the generator lifespan, heating issues, and efficiency. Simulations are carried out in PSIM software and MATLAB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5518100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 55visibility views 55 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5518100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Zenodo Hoque, Mohammad Rashedul; Hasan, Saad; Banik, Nidhu Lal; Ahmed, Nisar; Chowdhury, Shafkat Reza;Electricity shortage has become a major challenge to continued economic growth in Bangladesh. The country is growing in terms of GDP growth at a rate of 7% a year. Bangladesh is expected to move towards 23rd position globally by 2050 from its position 31 in 2014, in terms of GDP at purchasing power parity (PPP). The demand for electricity is forecasted to be 61,164 MW within the same period. Currently, electricity generation in Bangladesh is highly dependent on fossil fuels, nearly 59% is produced from natural gas followed by furnace oil, diesel and coal, while only 3% from renewables. Electricity generation is the largest single source of GHG (greenhouse gas) emissions in Bangladesh, and thus finding alternative energy source has become imperative for the country. Solar and nuclear energy sources have the potentials to be utilized for low-carbon energy sector and thus for a sustainable economic development in Bangladesh. Barriers to solar and nuclear energy will be reduced significantly in coming years with technological advancement. However, energy policies need to be revised to facilitate low-carbon energy technologies. Besides, more international collaboration is highly required not only to import new technologies but also to enhance the capacity of research and development (R&D) as well as overall adoption of the technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2591581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2591581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article , Journal 2019Publisher:Unpublished Authors: Irene Peters; Hannes Seller; Ivan Dochev;Because of the physical properties of heat energy, information about the spatial pattern of building heat demand is important for designing climate protection measures in the heating sector (efficiency improvements and renewable energy integration). Many cities in Germany currently prepare ‘heat demand cadastres’ – thematic maps, depicting building heat demand. The growing trend towards open data points into the direction of making these cadastres public, so that different actors can make use of them. However, making such data public may violate the legal requirement of protecting private data. We present a way of tackling this problem with an approach for the aggregation of spatially represented heat demand. Using an algorithm based on graph theory, we group buildings such that the tracing of energetic characteristics and behaviour to individuals is rendered unfeasible. Our method also allows additional constraints to be introduced, for example, aggregating with respect to plot boundaries. We discuss how the building groups can be visualised in a map by presenting a method of generating customised geometries for each group. Finally, we present a visualisation of both specific heat demand (in kWh/(m2*a)) and total heat demand (in kWh/a) in one and the same map. This aids the analysis of more complex questions involving energy efficiency and heat supply. International Journal of Sustainable Energy Planning and Management, Vol 24 (2019)
International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.31802.34249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.31802.34249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Emerald Publishing Authors: Md. Zakir Hossain; Md. Ashiq Ur Rahman;Purpose – The purpose of this paper is to examine pro-poor urban asset adaptation to climate variability and change. It constructs a conceptual framework that explores the appropriate asset adaptation strategies for extreme poor households as well as the process of supporting these households and groups in accumulating these assets. Design/methodology/approach – Qualitative data are obtained from life histories, key informant interviews (KIIs) and focus-group discussions (FGDs). These data are collected, coded and themed. Findings – This research identifies that households among the urban extreme poor do their best to adapt to perceived climate changes; however, in the absence of savings, and access to credit and insurance, they are forced to adopt adverse coping strategies. Individual adaptation practices yield minimal results and are short lived and even harmful because the urban extreme poor are excluded from formal policies and institutions as they lack formal rights and entitlements. For the poorest, the process of facilitating and maintaining patron–client relationships is a central coping strategy. Social policy approaches are found to be effective in facilitating asset adaptation for the urban extreme poor because they contribute to greater resilience to climate change. Originality/value – This study analyses the empirical evidence through the lens of a pro-poor asset-adaptation framework. It shows that the asset-transfer approach is an effective in building household-adaptation strategies. Equally important is the capacity to participate in and influence the institutions from which these people have previously been excluded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::229d47ea255c270e7092fc1309094964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::229d47ea255c270e7092fc1309094964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Journal 2021Publisher:Unknown Authors: Morsalina Khatun; Mst. Esmat Ara Begum; Md. Abdur Rashid; Md. Abdul Monayem Miah; +6 AuthorsMorsalina Khatun; Mst. Esmat Ara Begum; Md. Abdur Rashid; Md. Abdul Monayem Miah; Md. Kamrul Hasan; Morsalina Khatun; Mst. Esmat Ara Begum; Md. Abdur Rashid; Md. Abdul Monayem Miah; Md. Kamrul Hasan;Adaptation assists farmers to cope with climate change by reducing adverse effect and increasing productivity of agricultural production. The study was undertaken to evaluate the effect of climate change adaptation strategies on production efficiency of selected pulse crops in Bangladesh. A total of 100(50 chickpea and 50 lentil farmers) pulse growers were selected. A multistage random sampling technique was followed to select the sample farmers. Descriptive statistics and statistical analytical tools such as multinomial logit model and stochastic frontier production function were used. The most common strategy followed in the study areas was increased insecticides or pesticides application (90%) due to climate change. Farmers also followed more doses of fertilizer application (85%), crop diversification (60%), change in land under pulse cultivation (25%), land fragmentation (3%), relay cropping (6%) and seed treatment (11%) as main adaptation strategies to climate change. Climate change awareness had positive, farm size had negative but connection to extension services had both positive and negative significant relationship with choosing and using different climate change adaptation strategies in chickpea cultivation. Education, climate change awareness and extension contact had significant positive relationship and farm size had both positive and negative significant relationship with choosing and using different climate change adaptation strategies in lentil cultivation. Seed had negative and other agrochemicals had positive and significant effect on the yield of both pulses. Average technical efficiency of the farmers was 0.83 and 0.82 for chickpea and lentil respectively implies that there is a scope of increasing productivity of chickpea and lentil by 17% and 18% respectively using current level of inputs only by increasing the farmers’ efficiency. Adaptation strategy multiple planting dates had positive and significant effect on technical inefficiency of chickpea growers. Adaptation strategy relay cropping had negative and significant effect on technical inefficiency of lentil growers. Pulse production efficiency can be increased by eliminating the constraints to adopt climate change adaptation strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.313837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.313837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Authors: Md. Mujibur Rahman; Mohammad Adnan Rajib;Some of the major dimensions of climate change include increase in surface temperature, longer spells of droughts in significant portions of the world, associated higher evapotranspiration rates, and so on. It is therefore essential to comprehend the future possible scenario of climate change in terms of global warming. A high resolution limited area Regional Climate Model (RCM) can produce reasonably appropriate projections to be used for climate-scenario generation in country-scale. This paper features the development of future surface temperature projections for Bangladesh on monthly resolution for each year from 2011 to 2100 applying Providing Regional Climates for Impacts Studies (PRECIS), and it explains in detail the modeling processes including the model features, domain size selection, bias identification as well as construction of change field for the concerned climatic variable, in this case, surface temperature. PRECIS was run on a 50 km horizontal grid-spacing under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario and it was found to perform reasonably well in simulating future surface temperature of Bangladesh. The linear regression between observed and model simulated results of monthly average temperatures, within the 30-year period from 1971 to 2000, gives a high correlation of 0.93. The applied change field in average annual temperature shows only 0.5 °C–1 °C deviation from the observed values over the period from 2005 to 2008. Eventually, from the projected average temperature change during the years 1971–2000, it is apparent that warming in Bangladesh prevails invariably every month, which might eventually result in an average annual increase of 4 °C by the year 2100. Calculated anomalies in country-average annual temperature mostly remain on the positive side throughout the period of 2071–2100 indicating an overall up-shift. Apart from these quantitative analyses of temporal changes of temperature, this paper also illustrates their spatial distribution with a view to identify the most vulnerable zones under consequent warming through future times.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d77f7ee81700854d71039b1d83dc54aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d77f7ee81700854d71039b1d83dc54aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Leon Publications Authors: Shams, Kazi Humayra; Islam, Fardeen; Jakir, Tausif;The strategic economic benefits of sustainability have catapulted it to the forefront of supply chain management (SCM). Supply chain sustainability risks from a wide variety of sources have become more prevalent in today's complicated economic climate. However, there is a lack of researches on the topic of sustainability risk assessment at the moment. Unfortunately, existing risk assessment methods are not equipped to deal with the complexity, unpredictability, and fuzziness of the information that makes up supply chain (SC) risks in Bangladesh apparel industry. When supply- and demand-side restrictions aren't addressed, it can have a domino effect on the whole supply chain's efficiency. The report classifies the 21 potential threats to sustainability into six distinct categories. Based on the relative importance of each risk, the categories are as follows: environmental, social, economic, supplier, logistical, and information technology. Results also suggests supply 'lack of business information', 'insolvency of suppliers' and 'increased price of raw materials' are the top three sustainable supply chain risk factors. The report also ranks the 21 potential threats to sustainability and determines the top three. This research is important because it will help professionals analyze and manage sustainability risks in their supply chains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10055812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10055812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2018Publisher:WIP Authors: Mamunur Rahaman; Mohaimenul Islam; Arbab Chowdhury; Md. Mosaddequr Rahman;In recent days CZTS based thin film solar cells have attracted much attention due to their favorable electrical and optical properties, low cost and non-toxicity. A maximum laboratory efficiency of 10-12% has been reported for these types of cells. As the cells are subjected to much higher temperatures during outdoor operation, it is important to understand how CZTS cells will perform outdoor. This work investigates the effect of varying temperature on the different components of the dark current, as well as their effects on the cell performance. Among the different components of the dark current, trap-assisted tunneling recombination, thermionic emission and interface recombination are found to have significant contribution to the dark current while thermionic emission is found to be the dominating loss mechanism at high temperature. A calculation of cell efficiency at different temperatures show that the cell efficiency decreases from about 16.3% at 0°C to about only 7.3% at 75 °C. 35th European Photovoltaic Solar Energy Conference and Exhibition; 899-902
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/35theupvsec20182018-3bv.2.34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4229/35theupvsec20182018-3bv.2.34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Article , Journal , Other literature type 2017 Italy, Italy, Germany, United Kingdom, United Kingdom, France, United Kingdom, Germany, United Kingdom, Italy, United KingdomPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAndrea Bocci; Adomas Jelinskas; Vasiliki A Mitsou; Ryunosuke Iguchi; Teresa Lenz; Srinivasan Rajagopalan; Axel König; Markus Nordberg; Jos Vermeulen; Antonio Policicchio; Louis Helary; Bartosz Sebastian Dziedzic; Johannes Erdmann; Caterina Doglioni; Fernando Barreiro; Stefan Schlenker; Kunihiro Nagano; Tulin Varol; Alexander Khodinov; Brian Alexander Long; Eckhard von Toerne; Edisher Tskhadadze; Scott Snyder; Geert-Jan Besjes; Dms Sultan; Richard Nickerson; Hector De la Torre; David Hohn; Liza Mijović; Sebastien Prince; Anjishnu Bandyopadhyay; Carlo Varni; Tony Doyle; Arthur James Horton; Maximiliano Sioli; Urmila Soldevila; Marcia Begalli; Bruce Barnett; Tomas Slavicek; Elizabeth Brost; Alexander Zaitsev; Matteo Franchini; Yohei Yamaguchi; S. R. Hou; Blake Burghgrave; Trygve Buanes; Alvaro Lopez Solis; Yuri Kulchitsky; Michael Begel; Dilia Maria Portillo Quintero; Marco Milesi; Simon Berlendis; Olivier Le Dortz; Yoshiji Yasu; Antonio Limosani; Kun Liu; Mario Lassnig; Emily Nurse; Alessandro Cerri; Kaushik De; Maximilian Hils; Bogdan Malaescu; Yosuke Takubo; M. Franklin; Jacob Searcy; Nicolas Viaux Maira; Michael Rijssenbeek; Tairan Xu; Christian Weiser; Claire Gwenlan; Steve McMahon; Matthew Berg Epland; Edward Moyse; Michael David Werner; Jie Yu; Jorge Lopez; David Lynn; Borut Paul Kerševan; Martin Spousta; Clara Troncon; Jing Wang; Giacinto Piacquadio; Karel Smolek; Fabio Cerutti; Dimitrios Iliadis; Xiandong Zhao; Peter van Gemmeren; Stamatios Gkaitatzis; Sergei Chekanov; Tsz Yu Ng; Yoav Afik; David Francis; Ralf Hertenberger; Michael Adersberger; Maia Mosidze; David Vazquez Furelos; Vincent Pascuzzi; Andreas Petridis; Timothy Barklow; Nurcan Ozturk; Debarati Roy; Simonetta Gentile; Shuwei Ye; Wenhao Xu; Laurent Vacavant; Sabrina Sacerdoti; Stewart Martin-Haugh; Peter Krieger; Cunfeng Feng; Hasko Stenzel; Rui Zhang; Hal Evans; Angela Maria Burger; Mykhailo Lisovyi; Robert Richter; Rajaa Cherkaoui El Moursli; Matteo Negrini; Pavol Strizenec; Asma Hadef; C. Haber; Sabrina Groh; Andrea Rodriguez Perez; William Joseph Johnson; Koji Terashi; Mirkoantonio Casolino; James Ferrando; Jennifer Kathryn Roloff; Emma Torró Pastor; Piotr Andrzej Janus; Attila Krasznahorkay; P. Sinervo; Gabriella Gaudio; Shunichi Akatsuka; R. D. Kass; Alexander Cheplakov; Ping-Kun Teng; Cyril Becot; Haonan Lu; Phillip Gutierrez; Andrea Ventura; Nikolai Fomin; Dominic Hirschbuehl; Yun-Ju Lu; Cristian Stanescu; Francisca Garay Walls; Kuan-yu Lin; Baojia Tong; Huan Ren; Tomas Davidek; Stefan Kluth; Mikhail Ivanovitch Gostkin; Kilian Rosbach; James Robinson; Werner Wiedenmann; Stephanie Majewski; Michael Düren; Noemi Calace; Aaron James Armbruster; Anatoly Kozhin; Petr Gallus; Huacheng Cai; Katsufumi Sato; Pawel Malecki; Andrea Sansoni; Chiao-ying Lin; Attilio Picazio; Monika Wielers; Sarah Williams; Regina Moles-Valls; Frank Winklmeier; Ljiljana Simic; Boris Lemmer; Stephen Lloyd; Jane Cummings; Eric Hayato Takasugi; Wendy Taylor; Antonio Onofre; Dmitriy Maximov; Felix Mueller; Katharina Schleicher; Elisabetta Vilucchi; Qun Ouyang; Deepak Kar; Nacim Haddad; German D Carrillo-Montoya; Sina Bahrasemani; Masahiro Kuze; Harinder Singh Bawa; Daniel Joseph Antrim; Carl Jeske; Rebecca Anne Linck; Paolo Francavilla; Ruchi Gupta; Kristof Schmieden; Federico Lasagni Manghi; Sergey Denisov; Alexander Kupco; Ian Connelly; Peter Watkins; Giuliano Gustavino;handle: 2434/587222 , 11571/1270926 , 2108/197596
A measurement of the production of three isolated photons in proton–proton collisions at a centre-of-mass energy $\sqrt{s}$ = 8 TeV is reported. The results are based on an integrated luminosity of 20.2 fb$^{−1}$ collected with the ATLAS detector at the LHC. The differential cross sections are measured as functions of the transverse energy of each photon, the difference in azimuthal angle and in pseudorapidity between pairs of photons, the invariant mass of pairs of photons, and the invariant mass of the triphoton system. A measurement of the inclusive fiducial cross section is also reported. Next-to-leading-order perturbative QCD predictions are compared to the cross-section measurements. The predictions underestimate the measurement of the inclusive fiducial cross section and the differential measurements at low photon transverse energies and invariant masses. They provide adequate descriptions of the measurements at high values of the photon transverse energies, invariant mass of pairs of photons, and invariant mass of the triphoton system. Physics letters / B 781, 55 - 76 (2018). doi:10.1016/j.physletb.2018.03.057 Published by North-Holland Publ., Amsterdam
CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2018License: CC BYFull-Text: http://eprints.gla.ac.uk/162516/1/162516.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2018-04561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Taylor's University Authors: M. F. I. AL IMAM; MOHD. RAFIQUL ALAM BEG; M. S. RAHMAN;In this study, the performance of a photovoltaic-thermal solar collector with compound parabolic collector for clear day in winter and summer season was investigated. Phase change material storage unit, compound parabolic collector unit, photovoltaic thermal unit were integrated into one piece to reduce the area to get higher performance and better concentration ratio. The performance of water flow rate, heat removal factor, amount of energy storage of the collector in winter season and comparison of temperature variation, total generated energy, performance factor in summer season by varying different parameters were evaluated. Water flow rate increases up to 0.004 kg/s corresponding to the thermal efficiency of around 42%. Heat removal factor for thermal collector was in the range of 0.94-0.96, which indicates better energy gain of the system and effective outlet water temperature was found 55 0C in winter season. The total generated thermal energy 1500W and maximum performance factor of a collector was 0.0135 kW-1m2 in summer season. Finally total efficiency of a collector varies from 58% -68% in summer season.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::901f2db286be18b9ae53d5bbdacf93a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::901f2db286be18b9ae53d5bbdacf93a5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Authors: Ashfaqur Rahman; Md. Imran Hossain; G.M. Sharif Ullah Al-Mamun; Ahmed Anik Atik; +4 AuthorsAshfaqur Rahman; Md. Imran Hossain; G.M. Sharif Ullah Al-Mamun; Ahmed Anik Atik; Md. Rokib Hasan; Al Jubair Hossain; Sokhorio Margon D'Costa; A.S.M. Shakil Imam;The renewable energy sources like wind and solar energies can be combined to increase the total power generation and thereby increase the efficiency of the system. The combination also provides a means to overcome the intermittent nature of the solar and wind renewable energy sources, since one source can be used for power generation when other is not available. AC-DC converters are used convert the alternating voltage of the wind generator to a constant DC value which can be used to charge the batteries or later converted to AC voltage to drive AC loads. A Maximum Power Point Tracking (MPPT) system using boost converter is designed to extract maximum possible power from the sun when it is available. This method provides better harmonic reduction since Harmonic content is detrimental for the generator lifespan, heating issues, and efficiency. Simulations are carried out in PSIM software and MATLAB.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5518100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 55visibility views 55 download downloads 26 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5518100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Zenodo Hoque, Mohammad Rashedul; Hasan, Saad; Banik, Nidhu Lal; Ahmed, Nisar; Chowdhury, Shafkat Reza;Electricity shortage has become a major challenge to continued economic growth in Bangladesh. The country is growing in terms of GDP growth at a rate of 7% a year. Bangladesh is expected to move towards 23rd position globally by 2050 from its position 31 in 2014, in terms of GDP at purchasing power parity (PPP). The demand for electricity is forecasted to be 61,164 MW within the same period. Currently, electricity generation in Bangladesh is highly dependent on fossil fuels, nearly 59% is produced from natural gas followed by furnace oil, diesel and coal, while only 3% from renewables. Electricity generation is the largest single source of GHG (greenhouse gas) emissions in Bangladesh, and thus finding alternative energy source has become imperative for the country. Solar and nuclear energy sources have the potentials to be utilized for low-carbon energy sector and thus for a sustainable economic development in Bangladesh. Barriers to solar and nuclear energy will be reduced significantly in coming years with technological advancement. However, energy policies need to be revised to facilitate low-carbon energy technologies. Besides, more international collaboration is highly required not only to import new technologies but also to enhance the capacity of research and development (R&D) as well as overall adoption of the technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2591581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2591581&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Preprint , Article , Journal 2019Publisher:Unpublished Authors: Irene Peters; Hannes Seller; Ivan Dochev;Because of the physical properties of heat energy, information about the spatial pattern of building heat demand is important for designing climate protection measures in the heating sector (efficiency improvements and renewable energy integration). Many cities in Germany currently prepare ‘heat demand cadastres’ – thematic maps, depicting building heat demand. The growing trend towards open data points into the direction of making these cadastres public, so that different actors can make use of them. However, making such data public may violate the legal requirement of protecting private data. We present a way of tackling this problem with an approach for the aggregation of spatially represented heat demand. Using an algorithm based on graph theory, we group buildings such that the tracing of energetic characteristics and behaviour to individuals is rendered unfeasible. Our method also allows additional constraints to be introduced, for example, aggregating with respect to plot boundaries. We discuss how the building groups can be visualised in a map by presenting a method of generating customised geometries for each group. Finally, we present a visualisation of both specific heat demand (in kWh/(m2*a)) and total heat demand (in kWh/a) in one and the same map. This aids the analysis of more complex questions involving energy efficiency and heat supply. International Journal of Sustainable Energy Planning and Management, Vol 24 (2019)
International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.31802.34249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Energy Planning and ManagementArticle . 2019Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13140/rg.2.2.31802.34249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Publisher:Emerald Publishing Authors: Md. Zakir Hossain; Md. Ashiq Ur Rahman;Purpose – The purpose of this paper is to examine pro-poor urban asset adaptation to climate variability and change. It constructs a conceptual framework that explores the appropriate asset adaptation strategies for extreme poor households as well as the process of supporting these households and groups in accumulating these assets. Design/methodology/approach – Qualitative data are obtained from life histories, key informant interviews (KIIs) and focus-group discussions (FGDs). These data are collected, coded and themed. Findings – This research identifies that households among the urban extreme poor do their best to adapt to perceived climate changes; however, in the absence of savings, and access to credit and insurance, they are forced to adopt adverse coping strategies. Individual adaptation practices yield minimal results and are short lived and even harmful because the urban extreme poor are excluded from formal policies and institutions as they lack formal rights and entitlements. For the poorest, the process of facilitating and maintaining patron–client relationships is a central coping strategy. Social policy approaches are found to be effective in facilitating asset adaptation for the urban extreme poor because they contribute to greater resilience to climate change. Originality/value – This study analyses the empirical evidence through the lens of a pro-poor asset-adaptation framework. It shows that the asset-transfer approach is an effective in building household-adaptation strategies. Equally important is the capacity to participate in and influence the institutions from which these people have previously been excluded.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::229d47ea255c270e7092fc1309094964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::229d47ea255c270e7092fc1309094964&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Journal 2021Publisher:Unknown Authors: Morsalina Khatun; Mst. Esmat Ara Begum; Md. Abdur Rashid; Md. Abdul Monayem Miah; +6 AuthorsMorsalina Khatun; Mst. Esmat Ara Begum; Md. Abdur Rashid; Md. Abdul Monayem Miah; Md. Kamrul Hasan; Morsalina Khatun; Mst. Esmat Ara Begum; Md. Abdur Rashid; Md. Abdul Monayem Miah; Md. Kamrul Hasan;Adaptation assists farmers to cope with climate change by reducing adverse effect and increasing productivity of agricultural production. The study was undertaken to evaluate the effect of climate change adaptation strategies on production efficiency of selected pulse crops in Bangladesh. A total of 100(50 chickpea and 50 lentil farmers) pulse growers were selected. A multistage random sampling technique was followed to select the sample farmers. Descriptive statistics and statistical analytical tools such as multinomial logit model and stochastic frontier production function were used. The most common strategy followed in the study areas was increased insecticides or pesticides application (90%) due to climate change. Farmers also followed more doses of fertilizer application (85%), crop diversification (60%), change in land under pulse cultivation (25%), land fragmentation (3%), relay cropping (6%) and seed treatment (11%) as main adaptation strategies to climate change. Climate change awareness had positive, farm size had negative but connection to extension services had both positive and negative significant relationship with choosing and using different climate change adaptation strategies in chickpea cultivation. Education, climate change awareness and extension contact had significant positive relationship and farm size had both positive and negative significant relationship with choosing and using different climate change adaptation strategies in lentil cultivation. Seed had negative and other agrochemicals had positive and significant effect on the yield of both pulses. Average technical efficiency of the farmers was 0.83 and 0.82 for chickpea and lentil respectively implies that there is a scope of increasing productivity of chickpea and lentil by 17% and 18% respectively using current level of inputs only by increasing the farmers’ efficiency. Adaptation strategy multiple planting dates had positive and significant effect on technical inefficiency of chickpea growers. Adaptation strategy relay cropping had negative and significant effect on technical inefficiency of lentil growers. Pulse production efficiency can be increased by eliminating the constraints to adopt climate change adaptation strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.313837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.313837&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:MDPI AG Authors: Md. Mujibur Rahman; Mohammad Adnan Rajib;Some of the major dimensions of climate change include increase in surface temperature, longer spells of droughts in significant portions of the world, associated higher evapotranspiration rates, and so on. It is therefore essential to comprehend the future possible scenario of climate change in terms of global warming. A high resolution limited area Regional Climate Model (RCM) can produce reasonably appropriate projections to be used for climate-scenario generation in country-scale. This paper features the development of future surface temperature projections for Bangladesh on monthly resolution for each year from 2011 to 2100 applying Providing Regional Climates for Impacts Studies (PRECIS), and it explains in detail the modeling processes including the model features, domain size selection, bias identification as well as construction of change field for the concerned climatic variable, in this case, surface temperature. PRECIS was run on a 50 km horizontal grid-spacing under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario and it was found to perform reasonably well in simulating future surface temperature of Bangladesh. The linear regression between observed and model simulated results of monthly average temperatures, within the 30-year period from 1971 to 2000, gives a high correlation of 0.93. The applied change field in average annual temperature shows only 0.5 °C–1 °C deviation from the observed values over the period from 2005 to 2008. Eventually, from the projected average temperature change during the years 1971–2000, it is apparent that warming in Bangladesh prevails invariably every month, which might eventually result in an average annual increase of 4 °C by the year 2100. Calculated anomalies in country-average annual temperature mostly remain on the positive side throughout the period of 2071–2100 indicating an overall up-shift. Apart from these quantitative analyses of temporal changes of temperature, this paper also illustrates their spatial distribution with a view to identify the most vulnerable zones under consequent warming through future times.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d77f7ee81700854d71039b1d83dc54aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::d77f7ee81700854d71039b1d83dc54aa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Leon Publications Authors: Shams, Kazi Humayra; Islam, Fardeen; Jakir, Tausif;The strategic economic benefits of sustainability have catapulted it to the forefront of supply chain management (SCM). Supply chain sustainability risks from a wide variety of sources have become more prevalent in today's complicated economic climate. However, there is a lack of researches on the topic of sustainability risk assessment at the moment. Unfortunately, existing risk assessment methods are not equipped to deal with the complexity, unpredictability, and fuzziness of the information that makes up supply chain (SC) risks in Bangladesh apparel industry. When supply- and demand-side restrictions aren't addressed, it can have a domino effect on the whole supply chain's efficiency. The report classifies the 21 potential threats to sustainability into six distinct categories. Based on the relative importance of each risk, the categories are as follows: environmental, social, economic, supplier, logistical, and information technology. Results also suggests supply 'lack of business information', 'insolvency of suppliers' and 'increased price of raw materials' are the top three sustainable supply chain risk factors. The report also ranks the 21 potential threats to sustainability and determines the top three. This research is important because it will help professionals analyze and manage sustainability risks in their supply chains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10055812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10055812&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu