Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
281 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 15. Life on land
  • 2. Zero hunger
  • FR
  • BE
  • English

  • Authors: Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; +21 Authors

    Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chopart, Jean-Louis; Bonnal, Laurent; Martiné, Jean-François; Sabatier, Daniel;

    Two studies conducted in Guadeloupe (West Indies) and Réunion (Indian Ocean) islands were designed to investigate the benefits of producing sugarcane as an energy crop and to assess the influence of agroclimatic factors on energy efficiency, respectively. In this context, it is essential to know the low heating value of the dry above-ground biomass (LHVd, MJ/kg) and its energy yield (EY, MJ/m2) in order to select the best varieties and set up a payment method for growers. Eighteen Poaceae (sugarcane and Erianthus) cultivars were compared under wet tropical environmental conditions in Guadeloupe. Three sugarcane cultivars were studied in four contrasting environments in Réunion. The partition sampling and biomass measurement procedures were identical at both locations. Low heating value (LHV) predictions were achieved using near-infrared reflectance spectroscopy (NIRS) after specific calibration (Guadeloupe), or arithmetically after lignocellulosic compound prediction (Réunion). In both studies, LHV variability was very low and slightly dependent on the site, cultivar and above-ground biomass components (millable stalks and tops, and green and dead leaves). Considering the overall dry above-ground biomass (DAB, kg/m2), the LHVd was calculated by averaging 159 samples (mean 16.65 MJ/kg) in Guadeloupe and 315 samples (mean 16.45 MJ/kg) for Réunion. An excellent linear relationship between the DAB and its EY, regardless of cultivar, age and environment, was found (n = 474 and R² = 0.99). Sugarcane energy content assessment could thus be simplified by measuring the DAB, while enabling development of a faster method of payment for growers based on the DAB measurement and the correlation between DAB and EY. Finally, the findings of this study should allow growers to rapidly determine the commercial value of their sugarcane crops, and also enable purchasers to assess the amount of recoverable energy. (Résumé d'auteur)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2013
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2013
    Data sources: Agritrop
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2013
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2013
      Data sources: Agritrop
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wagner, Klaus; Neuwirth, Julia; Janetschek, Hubert; Wagner, Klaus; +2 Authors

    Recent extreme weather events have resulted in an ongoing discussion on the issues of land use and compensation payments within Austrian agriculture. Building on a functional evaluation system for agricultural lands as developed within the Interreg IIIB project “ILUP”, the national project “Agriculture and Flooding” has as its goal to classify the flood-protection contribution and flood sensitivity of agricultural lands. This, in turn, enables the recommendation of targeted measures for potentially improving flood situations, as well as an estimate of their implementation costs. In addition to the digital soil map, other fundamental sources used for the project are the digital flood risk map, IACS land-use data and works by the Institute for Land and Water Management Research. Reference values and marginal returns sourced from the Federal Institute of Agricultural Economics also flow into the cost estimates for the recommended combination. The results will contribute to an understanding of the multifunctionality of agricultural lands and to the setting of priorities on a regional scale regarding packaged flood-prevention and damage-minimization. However, the results at hand can only serve as one step toward regional flood protection projects, whose development will require the cooperation of all interest groups.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.22004/ag...
    Other literature type . 2009
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.22004/ag...
      Other literature type . 2009
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Colla, Martin; Jeanmart, Hervé; Julien Blondeau; Frogneux, Nathalie; +1 Authors

    In this poster, the authors present how biomass can broaden our conception of nature to ensure a sustainable future. It is a collaborative and inter-disciplinary work that criticises the modern concept of resource and recognises the interdependence within ecosystems and their limits. Biomass reanchors our needs in their materiality and reminds us that interactions on ecosystems cannot be seen solely through the prism of services and production. Non-humans are not just a decoration to be used for human consumption but are an ally for sustainable prosperity thus they should be treated as such – and biomass is a good place to start. The authors argue that there is an urgent need to redefine our sensibility to the non-humans, the ethics of our interactions and of our own needs which goes hand in hand with a necessary arbitration and debate on the useful and the superfluous final services for humans.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dépôt Institutionel ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dépôt Institutionel ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Calcagno, Vincenzo; Meenakshisundaram, Shruthi; Ceballos, Claire; Fayeulle, Antoine; +7 Authors

    Lignocellulosic biomass is a very attractive substrate for biogas production via anaerobic digestion. Among all, straw represents a very interesting and worldwide diffused agricultural by-product. However, due to the intrinsically complex structure of lignocellulosic biomass, straw has low biodegradability which results in low biogas yield. To increase the biogas production, chemical and physical pretreatments have been performed – i.e., size reduction, autoclave, and oxidation. The pretreatment conditions have been mitigated, in order to reduce their economic impact on the overall process and to make such pretreatments attractive at industrial level. The effects of the biomass pretreatments have been evaluated both by assessing the biomethane productivity in an anaerobic bioreactor and, in parallel, by characterizing the biomass at different levels – elemental content, functional groups, structural changes, and surface morphology. Results show a poor correlation between biogas production and the structural and chemical biomass changes. These findings confirm a more general issue: the difficulty of using biomass characterization alone to explain and predict the biogas production enhancement and of using such information to further improve biomass pretreatments.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-UPMCarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    HAL-UPMC
    Conference object . 2023
    Data sources: HAL-UPMC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-UPMCarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      HAL-UPMC
      Conference object . 2023
      Data sources: HAL-UPMC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Moulin, Vincent; Aubert, Michaël; Vincenot, Lucie;

    Climate change is characterised by changes in local temperature and precipitation. Hence, present tree species face in a near future the risk of living out of their optimal ecologic range. This would aggravate forest dieback and also impact forest ecosystem services. In order to adapt forests, forest managers are changing they practices, thus impacting current biodiversity for instance in forest soils hosting complex multi-taxonomic networks. Among new adaptative practices, managing new tree species to ensure forest sustainability appears as one of the best solutions. While the impact of tree species substitution was studied for the substitution of a broadleaf species to a resinous one or the reverse, we have fewer information for broadleaf to broadleaf or resinous to resinous substitution. Thus, the aims of this study were to address changes in soil fungi communities with tree substitution and the underlying mechanisms behind these changes. We focused on tree substitution in the same tree category (broadleaf or resinous). Four types of tree species substitution in five forests of northern France were selected. Two substitutions involved deciduous trees: from mature Fagus sylvatica L. towards young Quercus sp. with either an even aged or uneven aged management. The two others were substitutions from mature Pinus sylvestris L. to young Pinus nigra var. corsicana Poir. or Quercus rubra L. . Soil (0-15cm) and litter were sampled in 5 points over 69 forest stands to monitor soil fungal community composition by metabarcoding with the COI and ITS loci, respectively. Using the UNITE databases taxonomical identity was assigned to sequences using PIPITS. Soil parameters (C stock, N stock and humus forms), botanical surveys, trees basal area and canopy openness were assessed in order to explain soil communities’ variations. We identified the impacts of substitution on soil fungi using common descriptors of community diversity (richness and Jaccard distance). Also, community composition data were used along functional traits and trophic information retrieved from FUNGUILD to highlight what ecological functions can be gained or lost with those practices of climate change-adapted forestry. First results show that Fagus sylvatica and Quercus sp canopies were more closed than the Pinus sylvestris L., Pinus nigra var. corsicana Poir. and Quercus rubra L. ones and then canopy closure correlate with both the Morteriellomycota and the herbaceous layer richness. Ascomycota richness and Basidiomycota richness in soils were correlated to the tree layer richness. However, only Ascomycota richness in litter was correlated to the tree layer richness. Finally, Ascomycota, Basidiomycota and Morteriellomycota richness were more important in litter than in soil. International audience

    ResearchGate Dataarrow_drop_down
    ResearchGate Data
    Presentation . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    HAL Descartes
    Conference object . 2023
    License: CC BY NC
    Data sources: HAL Descartes
    HAL INRAE
    Conference object . 2023
    License: CC BY NC
    Data sources: HAL INRAE
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ResearchGate Dataarrow_drop_down
      ResearchGate Data
      Presentation . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      HAL Descartes
      Conference object . 2023
      License: CC BY NC
      Data sources: HAL Descartes
      HAL INRAE
      Conference object . 2023
      License: CC BY NC
      Data sources: HAL INRAE
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Van Stappen, Florence; Schenkel, Yves; Brose, Isabelle; Castiaux, Annick; +4 Authors

    Sustainable agriculture leads today to important questions about the diversification of agricultural production and sources of income for farmers, the use of rural and arable land for food and non-food crops, the contribution of agriculture to climate change fighting and the supply of renewable energy. Bioenergy from agriculture is at the heart of these concerns, integrating sustainable development key components: environment and climate change, energy economics and energy supply, agriculture, rural and social development. The lack of primary and reliable data on bioenergy externalities from agriculture and the lack of decision-making tools are important non-technological barriers to the development of bioenergy from agriculture on a large scale, and, consequently, to the achievement of the national and regional objectives of sustainable development with respect to greenhouse gas mitigation, secure and diversified energy supply, rural development and employment and the future of agriculture. Furthermore, the recent worldwide controversies about transport biofuels, food shortages and increasing prices have demonstrated the urgent need for sustainability criteria applied to biofuels and bioenergy. Within this current sustainable development framework, a project entitled TEXBIAG integrating experts from 4 research institutions is financed by the Belgian Science Policy. The final objective of this project is to lead to an actual and significant contribution of bioenergy from agriculture to the mitigation of greenhouse gas emissions, to a secure and diversified energy supply and to farmers' incomes and rural development. To reach this final objective, the project develops three specific tools: (1) a database of primary quantitative data related to environmental and socio-economic impacts of bioenergy from agriculture integrating biomass logistics; (2) a mathematical model monetizing bioenergy externalities from agriculture; and (3) a prediction tool assessing the impacts of political decisions made in the framework ofthe development of bioenergy from agriculture on different economic sectors (energy, agriculture, industry, and environment). An integrated interface tool will be programmed where access to and update of the three tools will be prepared. The project methodology will be conducted for a given number of scenarios with sensitivity analysis wherever possible. The three main target groups that will benefit from the project are: the government officials and policy makers in the field of agriculture, energy and environment in Belgium and its two main regions, the small, medium and large energy companies and the agricultural sector

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Di Mario, L.; Rao, Krishna C.; Drechsel, Pay; Di Mario, L.; +2 Authors

    In Otoo, Miriam; Drechsel, Pay (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon, UK: Routledge - Earthscan

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Taheripour, Farzad; Fiegel, Julie; Tyner, Wallace E.; Taheripour, Farzad; +2 Authors

    This paper first develops a partial equilibrium (PE) model to examine impacts of converting corn stover to biofuel on markets for corn and soybeans at the national market level. The PE model links gasoline, corn ethanol, dried distiller grains, corn, soybeans, and soybean meal markets in the presence and absence of a viable market for corn stover. The model also includes a technology which converts corn stover to bio-gasoline (a drop-in biofuel). The model evaluates profitability of the ethanol and bio-gasoline industries and assumes that these industries will expand/contract until profits reach zero. Given these assumptions and according to the predetermined supply and demand elasticities, the model determines equilibrium prices and their corresponding quantities for given exogenous variables defined in the model (such as crude oil price). The model is calibrated using data obtained for 2010 for USA economy and then solved for alternative crude oil prices in the presence and absence of a fixed subsidy of $1.01per gallon of bio-gasoline produced. Then we used the Purdue Crop Linear Programing (PCLP) model to assess farmers’ reactions to market equilibrium prices for corn, soybeans, and corn stover in the presence of a viable market for corn stover. The PCLP model determines profit-maximizing decisions for a given farm given its existing resources and estimated prices of commodities and input costs. We tuned the PCLP model according to the market clearing prices obtained from the PE model for a case when the crude oil price is $100 per barrel. Then using the tuned PCLP model we determined the optimum land allocation options for farmers. The partial equilibrium analyses show that: 1) with no bio-gasoline subsidy a limited amount of corn stover will be converted to biofuel even at very high crude oil prices; 2) The bio-gasoline subsidy could significantly boost production of this biofuel in particular at medium and higher crude oil prices; 3) no more than 45% of available corn stover will be removed for biofuel production; 4) converting corn stover to bio-gasoline boosts corn production, increases corn-corn rotation, and decreases supply of soybeans; and 5) converting corn stover to bio-gasoline changes the soybean to corn price ratio in favor of soybeans, at least in the very short term. The results obtained from the PCLP model show that the farm level land allocation decision is sensitive to the profitability of corn stover processing activities. When corn stover removal is introduced as a new option under the base case scenario at a corn stover price of $111 per ton) farmers allocate about 66% of their land to the corn-corn rotation and remove stover from their land. In this case corn stover is removed from 78.2% of available land at a rate of 1.18 tons per acre. If corn stover is demanded for biofuel production, then a major shift will be observed in crop rotations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Githui, Faith; Gitau, W.; Mutua, F.; Bauwens, Willy;

    Weather and climate extremes such its droughts and floods have far reaching impacts in Kenya. They have had implications on a variety of sectors including, agriculture, water resources, health, energy and disaster management among others. Lake Victoria and its catchment support millions of people and any impact onl its ability to support the livelihood of the communities in this region is of major concern. Thus, the main objective of this study was to assess the potential future climatic changes in the Nzoia catchment in the Lake Victoria basin and how they might affect streamflow The Soil and Water Assessment Tool was used to investigate the impact of climatic change on streamflow of the study area. The model was set up using readily available spatial and temporal data and calibrated against measured daily streamflow. Climate change. scenarios were obtained from general circulation models Results obtained showed increased amounts of annual rainfall for all the scenarios but with variations on a monthly basis. All - but 1 - global circulation models (GCMS) showed consistency in the monthly rainfall amounts. The analysis revealed important rainfall-runoff linear relationships for certain months that could be extrapolated to estimate amounts of streamflow under various scenarios of change in rainfall. Streamflow response was not sensitive to changes in temperature. If all other variables e.g. land cover, population growth etc, were held constant. a significant increase in streamflow may be expected in the coming decades as a consequence of increased rainfall amounts.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
281 Research products
  • Authors: Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; +21 Authors

    Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Chopart, Jean-Louis; Bonnal, Laurent; Martiné, Jean-François; Sabatier, Daniel;

    Two studies conducted in Guadeloupe (West Indies) and Réunion (Indian Ocean) islands were designed to investigate the benefits of producing sugarcane as an energy crop and to assess the influence of agroclimatic factors on energy efficiency, respectively. In this context, it is essential to know the low heating value of the dry above-ground biomass (LHVd, MJ/kg) and its energy yield (EY, MJ/m2) in order to select the best varieties and set up a payment method for growers. Eighteen Poaceae (sugarcane and Erianthus) cultivars were compared under wet tropical environmental conditions in Guadeloupe. Three sugarcane cultivars were studied in four contrasting environments in Réunion. The partition sampling and biomass measurement procedures were identical at both locations. Low heating value (LHV) predictions were achieved using near-infrared reflectance spectroscopy (NIRS) after specific calibration (Guadeloupe), or arithmetically after lignocellulosic compound prediction (Réunion). In both studies, LHV variability was very low and slightly dependent on the site, cultivar and above-ground biomass components (millable stalks and tops, and green and dead leaves). Considering the overall dry above-ground biomass (DAB, kg/m2), the LHVd was calculated by averaging 159 samples (mean 16.65 MJ/kg) in Guadeloupe and 315 samples (mean 16.45 MJ/kg) for Réunion. An excellent linear relationship between the DAB and its EY, regardless of cultivar, age and environment, was found (n = 474 and R² = 0.99). Sugarcane energy content assessment could thus be simplified by measuring the DAB, while enabling development of a faster method of payment for growers based on the DAB measurement and the correlation between DAB and EY. Finally, the findings of this study should allow growers to rapidly determine the commercial value of their sugarcane crops, and also enable purchasers to assess the amount of recoverable energy. (Résumé d'auteur)

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2013
    Data sources: Agritrop
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agritrop
    Conference object . 2013
    Data sources: Agritrop
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agritroparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2013
      Data sources: Agritrop
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agritrop
      Conference object . 2013
      Data sources: Agritrop
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wagner, Klaus; Neuwirth, Julia; Janetschek, Hubert; Wagner, Klaus; +2 Authors

    Recent extreme weather events have resulted in an ongoing discussion on the issues of land use and compensation payments within Austrian agriculture. Building on a functional evaluation system for agricultural lands as developed within the Interreg IIIB project “ILUP”, the national project “Agriculture and Flooding” has as its goal to classify the flood-protection contribution and flood sensitivity of agricultural lands. This, in turn, enables the recommendation of targeted measures for potentially improving flood situations, as well as an estimate of their implementation costs. In addition to the digital soil map, other fundamental sources used for the project are the digital flood risk map, IACS land-use data and works by the Institute for Land and Water Management Research. Reference values and marginal returns sourced from the Federal Institute of Agricultural Economics also flow into the cost estimates for the recommended combination. The results will contribute to an understanding of the multifunctionality of agricultural lands and to the setting of priorities on a regional scale regarding packaged flood-prevention and damage-minimization. However, the results at hand can only serve as one step toward regional flood protection projects, whose development will require the cooperation of all interest groups.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://dx.doi.org/10.22004/ag...
    Other literature type . 2009
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Research Papers in E...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://dx.doi.org/10.22004/ag...
      Other literature type . 2009
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Colla, Martin; Jeanmart, Hervé; Julien Blondeau; Frogneux, Nathalie; +1 Authors

    In this poster, the authors present how biomass can broaden our conception of nature to ensure a sustainable future. It is a collaborative and inter-disciplinary work that criticises the modern concept of resource and recognises the interdependence within ecosystems and their limits. Biomass reanchors our needs in their materiality and reminds us that interactions on ecosystems cannot be seen solely through the prism of services and production. Non-humans are not just a decoration to be used for human consumption but are an ally for sustainable prosperity thus they should be treated as such – and biomass is a good place to start. The authors argue that there is an urgent need to redefine our sensibility to the non-humans, the ethics of our interactions and of our own needs which goes hand in hand with a necessary arbitration and debate on the useful and the superfluous final services for humans.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dépôt Institutionel ...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Dépôt Institutionel ...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Calcagno, Vincenzo; Meenakshisundaram, Shruthi; Ceballos, Claire; Fayeulle, Antoine; +7 Authors

    Lignocellulosic biomass is a very attractive substrate for biogas production via anaerobic digestion. Among all, straw represents a very interesting and worldwide diffused agricultural by-product. However, due to the intrinsically complex structure of lignocellulosic biomass, straw has low biodegradability which results in low biogas yield. To increase the biogas production, chemical and physical pretreatments have been performed – i.e., size reduction, autoclave, and oxidation. The pretreatment conditions have been mitigated, in order to reduce their economic impact on the overall process and to make such pretreatments attractive at industrial level. The effects of the biomass pretreatments have been evaluated both by assessing the biomethane productivity in an anaerobic bioreactor and, in parallel, by characterizing the biomass at different levels – elemental content, functional groups, structural changes, and surface morphology. Results show a poor correlation between biogas production and the structural and chemical biomass changes. These findings confirm a more general issue: the difficulty of using biomass characterization alone to explain and predict the biogas production enhancement and of using such information to further improve biomass pretreatments.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-UPMCarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    HAL-UPMC
    Conference object . 2023
    Data sources: HAL-UPMC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL-UPMCarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      HAL-UPMC
      Conference object . 2023
      Data sources: HAL-UPMC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Moulin, Vincent; Aubert, Michaël; Vincenot, Lucie;

    Climate change is characterised by changes in local temperature and precipitation. Hence, present tree species face in a near future the risk of living out of their optimal ecologic range. This would aggravate forest dieback and also impact forest ecosystem services. In order to adapt forests, forest managers are changing they practices, thus impacting current biodiversity for instance in forest soils hosting complex multi-taxonomic networks. Among new adaptative practices, managing new tree species to ensure forest sustainability appears as one of the best solutions. While the impact of tree species substitution was studied for the substitution of a broadleaf species to a resinous one or the reverse, we have fewer information for broadleaf to broadleaf or resinous to resinous substitution. Thus, the aims of this study were to address changes in soil fungi communities with tree substitution and the underlying mechanisms behind these changes. We focused on tree substitution in the same tree category (broadleaf or resinous). Four types of tree species substitution in five forests of northern France were selected. Two substitutions involved deciduous trees: from mature Fagus sylvatica L. towards young Quercus sp. with either an even aged or uneven aged management. The two others were substitutions from mature Pinus sylvestris L. to young Pinus nigra var. corsicana Poir. or Quercus rubra L. . Soil (0-15cm) and litter were sampled in 5 points over 69 forest stands to monitor soil fungal community composition by metabarcoding with the COI and ITS loci, respectively. Using the UNITE databases taxonomical identity was assigned to sequences using PIPITS. Soil parameters (C stock, N stock and humus forms), botanical surveys, trees basal area and canopy openness were assessed in order to explain soil communities’ variations. We identified the impacts of substitution on soil fungi using common descriptors of community diversity (richness and Jaccard distance). Also, community composition data were used along functional traits and trophic information retrieved from FUNGUILD to highlight what ecological functions can be gained or lost with those practices of climate change-adapted forestry. First results show that Fagus sylvatica and Quercus sp canopies were more closed than the Pinus sylvestris L., Pinus nigra var. corsicana Poir. and Quercus rubra L. ones and then canopy closure correlate with both the Morteriellomycota and the herbaceous layer richness. Ascomycota richness and Basidiomycota richness in soils were correlated to the tree layer richness. However, only Ascomycota richness in litter was correlated to the tree layer richness. Finally, Ascomycota, Basidiomycota and Morteriellomycota richness were more important in litter than in soil. International audience

    ResearchGate Dataarrow_drop_down
    ResearchGate Data
    Presentation . 2023
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    HAL Descartes
    Conference object . 2023
    License: CC BY NC
    Data sources: HAL Descartes
    HAL INRAE
    Conference object . 2023
    License: CC BY NC
    Data sources: HAL INRAE
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      ResearchGate Dataarrow_drop_down
      ResearchGate Data
      Presentation . 2023
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      HAL Descartes
      Conference object . 2023
      License: CC BY NC
      Data sources: HAL Descartes
      HAL INRAE
      Conference object . 2023
      License: CC BY NC
      Data sources: HAL INRAE
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Van Stappen, Florence; Schenkel, Yves; Brose, Isabelle; Castiaux, Annick; +4 Authors

    Sustainable agriculture leads today to important questions about the diversification of agricultural production and sources of income for farmers, the use of rural and arable land for food and non-food crops, the contribution of agriculture to climate change fighting and the supply of renewable energy. Bioenergy from agriculture is at the heart of these concerns, integrating sustainable development key components: environment and climate change, energy economics and energy supply, agriculture, rural and social development. The lack of primary and reliable data on bioenergy externalities from agriculture and the lack of decision-making tools are important non-technological barriers to the development of bioenergy from agriculture on a large scale, and, consequently, to the achievement of the national and regional objectives of sustainable development with respect to greenhouse gas mitigation, secure and diversified energy supply, rural development and employment and the future of agriculture. Furthermore, the recent worldwide controversies about transport biofuels, food shortages and increasing prices have demonstrated the urgent need for sustainability criteria applied to biofuels and bioenergy. Within this current sustainable development framework, a project entitled TEXBIAG integrating experts from 4 research institutions is financed by the Belgian Science Policy. The final objective of this project is to lead to an actual and significant contribution of bioenergy from agriculture to the mitigation of greenhouse gas emissions, to a secure and diversified energy supply and to farmers' incomes and rural development. To reach this final objective, the project develops three specific tools: (1) a database of primary quantitative data related to environmental and socio-economic impacts of bioenergy from agriculture integrating biomass logistics; (2) a mathematical model monetizing bioenergy externalities from agriculture; and (3) a prediction tool assessing the impacts of political decisions made in the framework ofthe development of bioenergy from agriculture on different economic sectors (energy, agriculture, industry, and environment). An integrated interface tool will be programmed where access to and update of the three tools will be prepared. The project methodology will be conducted for a given number of scenarios with sensitivity analysis wherever possible. The three main target groups that will benefit from the project are: the government officials and policy makers in the field of agriculture, energy and environment in Belgium and its two main regions, the small, medium and large energy companies and the agricultural sector

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Di Mario, L.; Rao, Krishna C.; Drechsel, Pay; Di Mario, L.; +2 Authors

    In Otoo, Miriam; Drechsel, Pay (Eds.). Resource recovery from waste: business models for energy, nutrient and water reuse in low- and middle-income countries. Oxon, UK: Routledge - Earthscan

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Taheripour, Farzad; Fiegel, Julie; Tyner, Wallace E.; Taheripour, Farzad; +2 Authors

    This paper first develops a partial equilibrium (PE) model to examine impacts of converting corn stover to biofuel on markets for corn and soybeans at the national market level. The PE model links gasoline, corn ethanol, dried distiller grains, corn, soybeans, and soybean meal markets in the presence and absence of a viable market for corn stover. The model also includes a technology which converts corn stover to bio-gasoline (a drop-in biofuel). The model evaluates profitability of the ethanol and bio-gasoline industries and assumes that these industries will expand/contract until profits reach zero. Given these assumptions and according to the predetermined supply and demand elasticities, the model determines equilibrium prices and their corresponding quantities for given exogenous variables defined in the model (such as crude oil price). The model is calibrated using data obtained for 2010 for USA economy and then solved for alternative crude oil prices in the presence and absence of a fixed subsidy of $1.01per gallon of bio-gasoline produced. Then we used the Purdue Crop Linear Programing (PCLP) model to assess farmers’ reactions to market equilibrium prices for corn, soybeans, and corn stover in the presence of a viable market for corn stover. The PCLP model determines profit-maximizing decisions for a given farm given its existing resources and estimated prices of commodities and input costs. We tuned the PCLP model according to the market clearing prices obtained from the PE model for a case when the crude oil price is $100 per barrel. Then using the tuned PCLP model we determined the optimum land allocation options for farmers. The partial equilibrium analyses show that: 1) with no bio-gasoline subsidy a limited amount of corn stover will be converted to biofuel even at very high crude oil prices; 2) The bio-gasoline subsidy could significantly boost production of this biofuel in particular at medium and higher crude oil prices; 3) no more than 45% of available corn stover will be removed for biofuel production; 4) converting corn stover to bio-gasoline boosts corn production, increases corn-corn rotation, and decreases supply of soybeans; and 5) converting corn stover to bio-gasoline changes the soybean to corn price ratio in favor of soybeans, at least in the very short term. The results obtained from the PCLP model show that the farm level land allocation decision is sensitive to the profitability of corn stover processing activities. When corn stover removal is introduced as a new option under the base case scenario at a corn stover price of $111 per ton) farmers allocate about 66% of their land to the corn-corn rotation and remove stover from their land. In this case corn stover is removed from 78.2% of available land at a rate of 1.18 tons per acre. If corn stover is demanded for biofuel production, then a major shift will be observed in crop rotations.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Githui, Faith; Gitau, W.; Mutua, F.; Bauwens, Willy;

    Weather and climate extremes such its droughts and floods have far reaching impacts in Kenya. They have had implications on a variety of sectors including, agriculture, water resources, health, energy and disaster management among others. Lake Victoria and its catchment support millions of people and any impact onl its ability to support the livelihood of the communities in this region is of major concern. Thus, the main objective of this study was to assess the potential future climatic changes in the Nzoia catchment in the Lake Victoria basin and how they might affect streamflow The Soil and Water Assessment Tool was used to investigate the impact of climatic change on streamflow of the study area. The model was set up using readily available spatial and temporal data and calibrated against measured daily streamflow. Climate change. scenarios were obtained from general circulation models Results obtained showed increased amounts of annual rainfall for all the scenarios but with variations on a monthly basis. All - but 1 - global circulation models (GCMS) showed consistency in the monthly rainfall amounts. The analysis revealed important rainfall-runoff linear relationships for certain months that could be extrapolated to estimate amounts of streamflow under various scenarios of change in rainfall. Streamflow response was not sensitive to changes in temperature. If all other variables e.g. land cover, population growth etc, were held constant. a significant increase in streamflow may be expected in the coming decades as a consequence of increased rainfall amounts.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Vrije Universiteit B...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph