- home
- Advanced Search
- Energy Research
- 11. Sustainability
- US
- FR
- BE
- Nottingham Trent University
- Energy Research
- 11. Sustainability
- US
- FR
- BE
- Nottingham Trent University
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Elsevier BV Prakash Loungani; Gewei Wang; Ricardo Marto; Gail Cohen; João Tovar Jalles;We provide a comprehensive analysis of the relationship between greenhouse gas (GHG) emissions and GDP in China using both aggregate and provincial data. The Kuznets elasticity is about 0.6 for China, higher than that in advanced countries but below that of major emerging markets. The elasticity is somewhat lower for consumption-based emissions than for production-based emissions, providing mild evidence consistent with the “pollution haven” hypothesis. The Kuznets elasticity is much lower for the last three decades than for the three previous decades, suggesting a longer-term trend toward decoupling as China has become richer. Further evidence of this comes from provincial data: richer provinces tend to have smaller Kuznets elasticities than poorer ones. In addition to the trend relationship, we find that the Environmental Okun's Law holds in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3182511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3182511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2010 FrancePublisher:CAIRN Authors: Cabantous, Laure; Chanel, Olivier; Vergnaud, Jean-Christophe;Résumé Les transports génèrent de nombreuses externalités, dont celles liées à la pollution atmosphérique. Cet article analyse deux d’entre elles, les gaz à effet de serre et la pollution locale, qui, en général, sont étudiées séparément dans les travaux sur les politiques optimales de transport. Ici, ces externalités sont analysées conjointement grâce à un modèle de prise de décision séquentielle. Celui-ci permet de tenir compte de l’irréversibilité des politiques menées ainsi que de la possibilité d’une diminution progressive des incertitudes grâce à l’arrivée d’informations supplémentaires. Nous trouvons que des mesures structurelles qui permettent de limiter le recours aux transports privés sont économiquement plus avantageuses que des dispositifs techniques qui réduisent les émissions de substances polluantes. L’utilité de cette analyse conjointe des externalités est illustrée à travers deux cas : les dispositifs fiscaux qui grèvent l’automobile et la politique du logement. Classification JEL : C6; D62; D81; R48.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3917/ecoi.120.0011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3917/ecoi.120.0011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Australia, Australia, United StatesPublisher:Resilience Alliance, Inc. Funded by:NSF | EPSCOR RII Track 1: Manag...NSF| EPSCOR RII Track 1: Managing Idaho's Landscapes for Ecosystem ServicesGuerrero, Angela; Bennett, Nathan; Wilson, Kerrie; Carter, Neil; Gill, David; Mills, Morena; Ives, Christopher; Selinske, Matthew; Larrosa, Cecilia; Bekessy, Sarah; Januchowski-Hartley, Fraser; Travers, Henry; Wyborn, Carina; Nuno, Ana;handle: 10044/1/77896
An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations.
ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 208 Powered bymore_vert ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Zhongzhu Qiu; Xingxing Zhang; Xingxing Zhang; Yan Lu; Wei He; Wei He; Jingchun Shen; Xiaoqiang Dong; Zishang Zhu; Jinzhi Zhou; Xudong Zhao; Peng Xu; Peng Xu;The aim of the paper is to report a comprehensive review into a recently emerging building integrated solar thermal technology, namely, Active Solar Thermal Facades (ASTFs), in terms of concept, classification, standard, performance evaluation, application, as well as research questions. This involves the combined effort of literature review, analysis, extraction, integration, critics, prediction and conclusion. It is indicated that the ASTFs are sort of building envelope elements incorporating the solar collecting devices, thus enabling the dual functions, e.g., space shielding and solar energy collection, to be performed. Based on the function of the building envelopes, the ASTF systems can be generally classified as wall-, window-, balcony-and roof-based types; while the ASTFs could also be classified by the thermal collection typologies, transparency, application, and heat-transfer medium. Currently, existing building and solar collector standards are brought together to evaluate the performance of the ASTFs. The research questions relating to the ASTFs are numerous, but the major points lie in: (1) whole structure and individual components layout, sizing and optimisation; (2) theoretical analysis; (3) experimental measurement; and (4) energy saving, economic and environmental performance assessment. Based on the analysis of the identified research questions, achievements made on each question, and outstanding problems remaining with the ASTFs, further development opportunities on this topic are suggested: (1) development of an integrated database/software enabling both architecture design and engineering performance simulation; (2) real-time measurement of the ASTFs integrated buildings on a long-term scheme; (3) economic and environmental performance assessment and social acceptance analysis; (4) dissemination, marketing and exploitation strategies study. This study helps in identifying the current status, potential problems in existence, future directions in research, development and practical application of the ASTFs technologies in buildings. It will also promote development of renewable energy technology and thus contribute to achieving the UK and international targets in energy saving, renewable energy utilization, and carbon emission reduction in building sector.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV S. G. Simoes; L. Dias; J.P. Gouveia; J. Seixas; R. De Miglio; A. Chiodi; M. Gargiulo; G. Long; G. Giannakidis;Abstract Urban areas have a pivotal role to play in climate change mitigation, as they are responsible for a high share of energy consumption and provide many opportunities for more efficient supply & use of energy. This makes the case for energy system modelling at city level, as done within the INSMART EU project, which identified the optimum mix of measures for a sustainable energy future for four European cities in a holistic manner. The approach combined quantitative modelling with Multi-Criteria Decision Analysis. Sector specific data and models (buildings and transport) were articulated into one integrated energy system model based on the TIMES model generator. It was found that urban level energy modelling brings with it a new set of challenges, since for a well-known territory, transparency and effective communication with local decision-makers are even more important than at national or transnational level. Special efforts should be paid to making model results geographically explicit, and urban modelling results should expect scrutiny by local agents. It was found that there is a gap between the scope for action of local energy planners and the most energy intensive urban sectors, which highlighted new priorities instead of those traditionally taken under municipal management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:UKRI | Connected Everything II: ...UKRI| Connected Everything II: Accelerating Digital Manufacturing Research Collaboration and InnovationAuthors: Fatih Güleç; Jude A. Okolie;AbstractBiomass valorisation for bioenergy is crucial for establishing a sustainable low-carbon circular bioeconomy and addressing societal and environmental challenges. As global demand for renewable energy grows, effective waste management using biomass becomes increasingly vital. However, successful implementation requires addressing specific local, scientific, and conceptual challenges, including technological intricacies, resource availability, scalability, and environmental impacts. Advancements in chemical looping gasification and chemical looping combustion are reviewed here as essential components of bioenergy with carbon capture and storage technologies. Chemical looping technologies have substantially contributed to decarbonising various industries, supported by precise trends. The review highlights the potential of chemical looping combustion and gasification in biomass utilisation for generating bioenergy and mitigating carbon emissions. Moreover, the advantages of chemical looping processes enhance their feasibility and applicability across different contexts including (1) significant increase in biomass conversion efficiency through chemical looping gasification, leading to substantial reductions in greenhouse gas emissions, (2) progress in chemical looping combustion, enhancing carbon capture and storage capabilities and contributing to a closed carbon cycle, (3) detailed insights into integrating chemical looping technologies into industrial sectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-023-01656-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-023-01656-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Informa UK Limited Simone Abram; Ed Atkins; Alix Dietzel; Kirsten Jenkins; Lorna Kiamba; Joshua Kirshner; Julia Kreienkamp; Karen Parkhill; Tom Pegram; Lara M. Santos Ayllón;Transition to a post-carbon economy implies changes that are both far-reaching and unprecedented. The notion that a decarbonization transition must encompass multiple forms of justice is gaining ground. In response, the concept of Just Transition has become ever more popular – and confusion about its meaning ever greater. We argue in this paper that the term Just Transition needs a rigorous updating to develop its full conceptual power for the analysis and evaluation of the rapid and extensive energy transitions already underway. After reviewing the different uses of Just Transition in practice and scholarship, we propose that the term be used as an analytical concept for an ongoing process of transition. The Just Transition concept can provide an integrated, whole-system perspective on justice (procedural, distributive, recognition, and restorative) that can help in identifying systemic solutions to address environmental and socio-economic concerns. This would differ from reductionist approaches that derive from legacy silo-sectoral or technologically driven approaches; these too often overlook negative side-effects and wider justice implications of reorganizing economic practice. An examination of COVID-19 pandemic responses illustrates our operationalization of the Just Transition concept, highlighting the importance of designing whole-system policies that are equitable, as well as the pitfalls of pursuing a narrow sectoral approach. Taking seriously the implications of complex systems with hard-to-predict effects also has concrete implications for policy interventions at all levels of governance. In particular, we highlight the importance of attending to multiple social inequalities for ensuring the resilience of wholesystem decarbonization in the face of instability, unpredictability, and unprecedented change.
CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/37022/Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2022.2108365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 46visibility views 46 download downloads 40 Powered bymore_vert CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/37022/Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2022.2108365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:UKRI | EnergyScapes and Ecosyste...UKRI| EnergyScapes and Ecosystem ServicesHoward, DC; Burgess, PJ; Butler, S; Carver, SJ; Cockerill, T; Coleby, AM; Gan, G; Goodier, CJ; Van der Horst, D; Hubacek, K; Lord, R; Mead, A; Rivas-Casado, M; Wadsworth, RA; Scholefield, P;The drive for sustainable energy production is leading to increased deployment of land based renewables. Although there is public support, in principle, for renewable energy at a national level, major resistance to renewable energy technologies often occurs at a local level. Within this context, it can be useful to consider the "energyscape" which we initially define as the complex spatial and temporal combination of the supply, demand and infrastructure for energy within a landscape. By starting with a consideration of the energyscape, we can then consider the positive and negative interactions with other ecosystem services within a particular landscape. This requires a multi-disciplinary systems-approach that uses existing knowledge of landscapes, energy options, and the different perspectives of stakeholders. The approach is examined in relation to pilot casestudy comprising a 155 km(2) catchment in Bedfordshire, England. (C) 2012 Elsevier Ltd. All rights reserved.
Biomass and Bioenerg... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.05.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.05.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Gang Pan; Gang Pan; Jafar Ali; Lei Wang; Bo Song; Ridha Djellabi; Hassan Waseem;pmid: 32827985
Effective utilization of harmful algal biomass from eutrophic lakes is required for sustainable waste management and circular bioeconomy. In this study, Microcystis aeruginosa derived biomass served as an electron donor in the microbial fuel cell (MFC) for waste treatment and electricity generation. Bioelectrochemical performance of MFC fed with microalgae (MFC-Algae) was compared with MFC fed with a commercial substrate (MFC-Acetate). Complete removal of microcystin-LR (MC-LR) and high chemical oxygen demand (COD) removal efficiency (67.5 ± 1%) in MFC-Algae showed that harmful algal biomass could be converted into bioelectricity. Polarization curves revealed that MFC-Algae delivered the maximum power density (83 mW/m2) and current density (672 mA/m2), which was 43% and 45% higher than that of MFC-Acetate respectively. Improved electrochemical performance and substantial coulombic efficiency (7.6%) also verified the potential use of harmful algal biomass as an alternate MFC substrate. Diverse microbial community profiles showed the substrate-dependent electrogenic activities in each MFC. Biodegradation pathway of MC-LR by anodic microbes was also explored in detail. Briefly, a sustainable approach for on-site waste management of harmful algal biomass was presented, which was deprived of transportation and special pretreatments. It is anticipated that current findings will help to pave the way for practical applications of MFC technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Elsevier BV Prakash Loungani; Gewei Wang; Ricardo Marto; Gail Cohen; João Tovar Jalles;We provide a comprehensive analysis of the relationship between greenhouse gas (GHG) emissions and GDP in China using both aggregate and provincial data. The Kuznets elasticity is about 0.6 for China, higher than that in advanced countries but below that of major emerging markets. The elasticity is somewhat lower for consumption-based emissions than for production-based emissions, providing mild evidence consistent with the “pollution haven” hypothesis. The Kuznets elasticity is much lower for the last three decades than for the three previous decades, suggesting a longer-term trend toward decoupling as China has become richer. Further evidence of this comes from provincial data: richer provinces tend to have smaller Kuznets elasticities than poorer ones. In addition to the trend relationship, we find that the Environmental Okun's Law holds in China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3182511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3182511&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Report 2010 FrancePublisher:CAIRN Authors: Cabantous, Laure; Chanel, Olivier; Vergnaud, Jean-Christophe;Résumé Les transports génèrent de nombreuses externalités, dont celles liées à la pollution atmosphérique. Cet article analyse deux d’entre elles, les gaz à effet de serre et la pollution locale, qui, en général, sont étudiées séparément dans les travaux sur les politiques optimales de transport. Ici, ces externalités sont analysées conjointement grâce à un modèle de prise de décision séquentielle. Celui-ci permet de tenir compte de l’irréversibilité des politiques menées ainsi que de la possibilité d’une diminution progressive des incertitudes grâce à l’arrivée d’informations supplémentaires. Nous trouvons que des mesures structurelles qui permettent de limiter le recours aux transports privés sont économiquement plus avantageuses que des dispositifs techniques qui réduisent les émissions de substances polluantes. L’utilité de cette analyse conjointe des externalités est illustrée à travers deux cas : les dispositifs fiscaux qui grèvent l’automobile et la politique du logement. Classification JEL : C6; D62; D81; R48.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3917/ecoi.120.0011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverPreprint . 2010Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3917/ecoi.120.0011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2019Embargo end date: 16 Mar 2019 Japan, Germany, France, France, France, Japan, Spain, France, Switzerland, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | HELIX, EC | IMPACT2CEC| HELIX ,EC| IMPACT2CJeroen Steenbeek; Erwin Schmid; Tyler D. Eddy; Tyler D. Eddy; Tyler D. Eddy; Derek P. Tittensor; Derek P. Tittensor; Rene Orth; Rene Orth; Yadu Pokhrel; Joshua Elliott; Yusuke Satoh; Yusuke Satoh; Christian Folberth; Louis François; Andrew D. Friend; Catherine Morfopoulos; Nikolay Khabarov; Peter Lawrence; Naota Hanasaki; Michelle T. H. van Vliet; Akihiko Ito; Sonia I. Seneviratne; Veronika Huber; Thomas A. M. Pugh; Jinfeng Chang; Tobias Stacke; Philippe Ciais; Lila Warszawski; Jan Volkholz; Matthias Büchner; Yoshihide Wada; Christopher P. O. Reyer; Xuhui Wang; Xuhui Wang; Xuhui Wang; Dieter Gerten; Dieter Gerten; Sebastian Ostberg; Qiuhong Tang; Gen Sakurai; David A. Carozza; David A. Carozza; Christoph Müller; Jacob Schewe; Lutz Breuer; Delphine Deryng; Heike K. Lotze; Hannes Müller Schmied; Robert Vautard; Hyungjun Kim; Fang Zhao; Allard de Wit; Jörg Steinkamp; Katja Frieler; Simon N. Gosling; Lukas Gudmundsson; Marta Coll; Hanqin Tian;doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
doi: 10.1038/s41467-019-08745-6 , 10.17863/cam.37807 , 10.60692/8dj48-81382 , 10.3929/ethz-b-000330244 , 10.60692/8mcvk-e7225
pmid: 30824763
pmc: PMC6397256
handle: 10261/181642
AbstractGlobal impact models represent process-level understanding of how natural and human systems may be affected by climate change. Their projections are used in integrated assessments of climate change. Here we test, for the first time, systematically across many important systems, how well such impact models capture the impacts of extreme climate conditions. Using the 2003 European heat wave and drought as a historical analogue for comparable events in the future, we find that a majority of models underestimate the extremeness of impacts in important sectors such as agriculture, terrestrial ecosystems, and heat-related human mortality, while impacts on water resources and hydropower are overestimated in some river basins; and the spread across models is often large. This has important implications for economic assessments of climate change impacts that rely on these models. It also means that societal risks from future extreme events may be greater than previously thought.
Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 186 citations 186 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université Jean Monnet – Saint-Etienne: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02895259Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2019License: CC BYData sources: Wageningen Staff PublicationsHochschulschriftenserver - Universität Frankfurt am MainArticle . 2019Data sources: Hochschulschriftenserver - Universität Frankfurt am MainPublication Server of Goethe University Frankfurt am MainArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-019-08745-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United States, United Kingdom, Australia, Australia, United StatesPublisher:Resilience Alliance, Inc. Funded by:NSF | EPSCOR RII Track 1: Manag...NSF| EPSCOR RII Track 1: Managing Idaho's Landscapes for Ecosystem ServicesGuerrero, Angela; Bennett, Nathan; Wilson, Kerrie; Carter, Neil; Gill, David; Mills, Morena; Ives, Christopher; Selinske, Matthew; Larrosa, Cecilia; Bekessy, Sarah; Januchowski-Hartley, Fraser; Travers, Henry; Wyborn, Carina; Nuno, Ana;handle: 10044/1/77896
An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations.
ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 17visibility views 17 download downloads 208 Powered bymore_vert ScholarWorks Boise S... arrow_drop_down ScholarWorks Boise State UniversityArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BY NCFull-Text: http://hdl.handle.net/10044/1/77896Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-10232-230338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Zhongzhu Qiu; Xingxing Zhang; Xingxing Zhang; Yan Lu; Wei He; Wei He; Jingchun Shen; Xiaoqiang Dong; Zishang Zhu; Jinzhi Zhou; Xudong Zhao; Peng Xu; Peng Xu;The aim of the paper is to report a comprehensive review into a recently emerging building integrated solar thermal technology, namely, Active Solar Thermal Facades (ASTFs), in terms of concept, classification, standard, performance evaluation, application, as well as research questions. This involves the combined effort of literature review, analysis, extraction, integration, critics, prediction and conclusion. It is indicated that the ASTFs are sort of building envelope elements incorporating the solar collecting devices, thus enabling the dual functions, e.g., space shielding and solar energy collection, to be performed. Based on the function of the building envelopes, the ASTF systems can be generally classified as wall-, window-, balcony-and roof-based types; while the ASTFs could also be classified by the thermal collection typologies, transparency, application, and heat-transfer medium. Currently, existing building and solar collector standards are brought together to evaluate the performance of the ASTFs. The research questions relating to the ASTFs are numerous, but the major points lie in: (1) whole structure and individual components layout, sizing and optimisation; (2) theoretical analysis; (3) experimental measurement; and (4) energy saving, economic and environmental performance assessment. Based on the analysis of the identified research questions, achievements made on each question, and outstanding problems remaining with the ASTFs, further development opportunities on this topic are suggested: (1) development of an integrated database/software enabling both architecture design and engineering performance simulation; (2) real-time measurement of the ASTFs integrated buildings on a long-term scheme; (3) economic and environmental performance assessment and social acceptance analysis; (4) dissemination, marketing and exploitation strategies study. This study helps in identifying the current status, potential problems in existence, future directions in research, development and practical application of the ASTFs technologies in buildings. It will also promote development of renewable energy technology and thus contribute to achieving the UK and international targets in energy saving, renewable energy utilization, and carbon emission reduction in building sector.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.04.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV S. G. Simoes; L. Dias; J.P. Gouveia; J. Seixas; R. De Miglio; A. Chiodi; M. Gargiulo; G. Long; G. Giannakidis;Abstract Urban areas have a pivotal role to play in climate change mitigation, as they are responsible for a high share of energy consumption and provide many opportunities for more efficient supply & use of energy. This makes the case for energy system modelling at city level, as done within the INSMART EU project, which identified the optimum mix of measures for a sustainable energy future for four European cities in a holistic manner. The approach combined quantitative modelling with Multi-Criteria Decision Analysis. Sector specific data and models (buildings and transport) were articulated into one integrated energy system model based on the TIMES model generator. It was found that urban level energy modelling brings with it a new set of challenges, since for a well-known territory, transparency and effective communication with local decision-makers are even more important than at national or transnational level. Special efforts should be paid to making model results geographically explicit, and urban modelling results should expect scrutiny by local agents. It was found that there is a gap between the scope for action of local energy planners and the most energy intensive urban sectors, which highlighted new priorities instead of those traditionally taken under municipal management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2018.02.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Funded by:UKRI | Connected Everything II: ...UKRI| Connected Everything II: Accelerating Digital Manufacturing Research Collaboration and InnovationAuthors: Fatih Güleç; Jude A. Okolie;AbstractBiomass valorisation for bioenergy is crucial for establishing a sustainable low-carbon circular bioeconomy and addressing societal and environmental challenges. As global demand for renewable energy grows, effective waste management using biomass becomes increasingly vital. However, successful implementation requires addressing specific local, scientific, and conceptual challenges, including technological intricacies, resource availability, scalability, and environmental impacts. Advancements in chemical looping gasification and chemical looping combustion are reviewed here as essential components of bioenergy with carbon capture and storage technologies. Chemical looping technologies have substantially contributed to decarbonising various industries, supported by precise trends. The review highlights the potential of chemical looping combustion and gasification in biomass utilisation for generating bioenergy and mitigating carbon emissions. Moreover, the advantages of chemical looping processes enhance their feasibility and applicability across different contexts including (1) significant increase in biomass conversion efficiency through chemical looping gasification, leading to substantial reductions in greenhouse gas emissions, (2) progress in chemical looping combustion, enhancing carbon capture and storage capabilities and contributing to a closed carbon cycle, (3) detailed insights into integrating chemical looping technologies into industrial sectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-023-01656-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10311-023-01656-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Informa UK Limited Simone Abram; Ed Atkins; Alix Dietzel; Kirsten Jenkins; Lorna Kiamba; Joshua Kirshner; Julia Kreienkamp; Karen Parkhill; Tom Pegram; Lara M. Santos Ayllón;Transition to a post-carbon economy implies changes that are both far-reaching and unprecedented. The notion that a decarbonization transition must encompass multiple forms of justice is gaining ground. In response, the concept of Just Transition has become ever more popular – and confusion about its meaning ever greater. We argue in this paper that the term Just Transition needs a rigorous updating to develop its full conceptual power for the analysis and evaluation of the rapid and extensive energy transitions already underway. After reviewing the different uses of Just Transition in practice and scholarship, we propose that the term be used as an analytical concept for an ongoing process of transition. The Just Transition concept can provide an integrated, whole-system perspective on justice (procedural, distributive, recognition, and restorative) that can help in identifying systemic solutions to address environmental and socio-economic concerns. This would differ from reductionist approaches that derive from legacy silo-sectoral or technologically driven approaches; these too often overlook negative side-effects and wider justice implications of reorganizing economic practice. An examination of COVID-19 pandemic responses illustrates our operationalization of the Just Transition concept, highlighting the importance of designing whole-system policies that are equitable, as well as the pitfalls of pursuing a narrow sectoral approach. Taking seriously the implications of complex systems with hard-to-predict effects also has concrete implications for policy interventions at all levels of governance. In particular, we highlight the importance of attending to multiple social inequalities for ensuring the resilience of wholesystem decarbonization in the face of instability, unpredictability, and unprecedented change.
CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/37022/Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2022.2108365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 68 citations 68 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 46visibility views 46 download downloads 40 Powered bymore_vert CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/37022/Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2022.2108365&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 United KingdomPublisher:Elsevier BV Funded by:UKRI | EnergyScapes and Ecosyste...UKRI| EnergyScapes and Ecosystem ServicesHoward, DC; Burgess, PJ; Butler, S; Carver, SJ; Cockerill, T; Coleby, AM; Gan, G; Goodier, CJ; Van der Horst, D; Hubacek, K; Lord, R; Mead, A; Rivas-Casado, M; Wadsworth, RA; Scholefield, P;The drive for sustainable energy production is leading to increased deployment of land based renewables. Although there is public support, in principle, for renewable energy at a national level, major resistance to renewable energy technologies often occurs at a local level. Within this context, it can be useful to consider the "energyscape" which we initially define as the complex spatial and temporal combination of the supply, demand and infrastructure for energy within a landscape. By starting with a consideration of the energyscape, we can then consider the positive and negative interactions with other ecosystem services within a particular landscape. This requires a multi-disciplinary systems-approach that uses existing knowledge of landscapes, energy options, and the different perspectives of stakeholders. The approach is examined in relation to pilot casestudy comprising a 155 km(2) catchment in Bedfordshire, England. (C) 2012 Elsevier Ltd. All rights reserved.
Biomass and Bioenerg... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.05.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 55 citations 55 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biomass and Bioenerg... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2012.05.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Gang Pan; Gang Pan; Jafar Ali; Lei Wang; Bo Song; Ridha Djellabi; Hassan Waseem;pmid: 32827985
Effective utilization of harmful algal biomass from eutrophic lakes is required for sustainable waste management and circular bioeconomy. In this study, Microcystis aeruginosa derived biomass served as an electron donor in the microbial fuel cell (MFC) for waste treatment and electricity generation. Bioelectrochemical performance of MFC fed with microalgae (MFC-Algae) was compared with MFC fed with a commercial substrate (MFC-Acetate). Complete removal of microcystin-LR (MC-LR) and high chemical oxygen demand (COD) removal efficiency (67.5 ± 1%) in MFC-Algae showed that harmful algal biomass could be converted into bioelectricity. Polarization curves revealed that MFC-Algae delivered the maximum power density (83 mW/m2) and current density (672 mA/m2), which was 43% and 45% higher than that of MFC-Acetate respectively. Improved electrochemical performance and substantial coulombic efficiency (7.6%) also verified the potential use of harmful algal biomass as an alternate MFC substrate. Diverse microbial community profiles showed the substrate-dependent electrogenic activities in each MFC. Biodegradation pathway of MC-LR by anodic microbes was also explored in detail. Briefly, a sustainable approach for on-site waste management of harmful algal biomass was presented, which was deprived of transportation and special pretreatments. It is anticipated that current findings will help to pave the way for practical applications of MFC technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2020.115373&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu