- home
- Advanced Search
- Energy Research
- BE
- Energies
- Vrije Universiteit Brussel
- Energy Research
- BE
- Energies
- Vrije Universiteit Brussel
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Malaysia, Australia, AustraliaPublisher:MDPI AG Authors: Amirreza Naderipour; Zulkurnain Abdul-Malek; Mohammad Reza Miveh; Mohammad Jafar Hadidian Moghaddam; +2 AuthorsAmirreza Naderipour; Zulkurnain Abdul-Malek; Mohammad Reza Miveh; Mohammad Jafar Hadidian Moghaddam; Akhtar Kalam; Foad. H. Gandoman;doi: 10.3390/en11102629
Mitigation of harmonics for a grid-connected inverter is an important element to stabilize the control and the quality of current injected into the grid. This paper deals with the control method of a three-phase Grid-Connected Inverter (GCI) Photovoltaic (PV) system, which is based on the zero-sequence current adjuster. The proposed method is capable of removing the harmonic current and voltage without using any active and passive filters and without the knowledge of the microgrid topology and also impedances of distribution bands and loading conditions. This concept is adopted for the control of a Distributed Generator (DG) in the form of grid-connected inverter. The proposed control can be applied to the grid connected inverter of the PV. The fast dynamic response, simple design, stability, and fast transient response are the new main features of the proposed design. This paper also analyzes the circuit configuration effects on the grid connected inverter capability. The proposed control is used to demonstrate the improved stability and performance.
VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2018License: CC BYFull-Text: https://vuir.vu.edu.au/38093/Data sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2018License: CC BYFull-Text: https://vuir.vu.edu.au/38093/Data sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Arne Höltl; Cathy Macharis; Klaas De Brucker;doi: 10.3390/en11010020
This paper analyses decarbonisation scenarios for the European passenger car fleet in 2050. The scenarios have been developed using the backcasting approach and aim to reduce greenhouse gas (GHG) emissions of passenger cars to a level defined in the Transport White paper that is 60% below 1990 levels. Considering the emission levels of 2010, a yearly reduction of 1.7% is required in order to achieve the target. Car emissions were decomposed into the main emission factors of mobility, efficiency and carbon intensity. How these factors change over time depends on various external factors: the pace of technological improvements, the future role of cars in society’s mobility system and the priority given to decarbonising energy demand. The analysis showed that if car mobility and ownership continue to increase as expected in a ‘business as usual’ case, a share of 97% plug-in hybrid or battery electric vehicles might be required by 2050, together with a substantial decrease in greenhouse gas emission from electricity production. A transition to more advanced car technology such as automated driving, advanced batteries or lightweight materials in vehicle production would raise vehicle efficiency. Should car mobility continue at a high level, an early technology transition will be required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Shahid Jaman; Sajib Chakraborty; Dai-Duong Tran; Thomas Geury; Mohamed El Baghdadi; Omar Hegazy;doi: 10.3390/en15155376
This article reviews the different topologies compatible with V2G feature and control approaches of integrated onboard charger (iOBC) systems for battery electric vehicles (BEVs). The integrated topologies are presented, analyzed, and compared in terms of component count, switching frequency, total harmonic distortion (THD), charging and traction efficiencies, controllability, reliability and multifunctionality. This paper also analyzes different control approaches for charging and traction modes. Moreover, the performance indices such as setting time, rise time, overshoot, etc., are summarized for charging and traction operations. Additionally, the feasibility of a Level 3 charging (AC fast charging with 400 Vac) of up to 44 kW iOBC is discussed in terms of converter efficiencies with different switching frequencies and switch technologies such as SiC and GaN. Finally, this paper explores the power density trends of different commercial integrated charging systems. The power density trend analysis could certainly help researchers and solution engineers in the automotive industry to select the suitable converter topology to achieve the projected power density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Rémy Cleenwerck; Hakim Azaioud; Majid Vafaeipour; Thierry Coosemans; Jan Desmet;doi: 10.3390/en16073205
This paper presents an in-depth comparison of the benefits and limitations of using a low-voltage DC (LVDC) microgrid versus an AC microgrid with regard to the integration of low-carbon technologies. To this end, a novel approach for charging electric vehicles (EVs) on low-voltage distribution networks by utilizing an LVDC backbone is discussed. The global aim of the conducted study is to investigate the overall energy losses as well as voltage stability problems on DC and AC microgrids. Both architectures are assessed and compared to each other by performing a power flow analysis. Along this line, an actual low-voltage distribution network with various penetration levels of EVs, combined with photovoltaic (PV) systems and battery energy storage systems is considered. Obtained results indicate significant power quality improvements in voltage imbalances and conversion losses thanks to the proposed backbone. Moreover, the study concludes with a discussion of the impact level of EVs and PVs penetration degrees on energy efficiency, besides charging power levels’ impact on local self-consumption reduction of the studied system. The outcomes of the study can provide extensive insights for hybrid microgrid and EV charging infrastructure designers in a holistic manner in all aspects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Mustapha Al Sakka; Thomas Geury; Mohamed El Baghdadi; Miguel Dhaens; Monzer Al Sakka; Omar Hegazy;doi: 10.3390/en15155529
With vehicle electrification and employment of X-by-wire technology, mechanical systems are being replaced by motor drives which improve the efficiency and performance of vehicular systems. However, motor drives have a lower power density and reliability compared to mechanical solutions. Multi-motor drives have the potential of mitigating both these drawbacks. In this paper, a state-of-the-art review of multi-motor drives and their application to vehicular systems is carried out. Firstly, the case of multi-motor systems in automotive applications is laid out by presenting the different vehicular systems comprising multiple motors. Secondly, multi-motor drive topologies with improved power density, reliability and fault tolerance capabilities are thoroughly analyzed. Finally, the topologies are assessed and compared in the context of automotive applications. The assessment verifies that multi-motor drives allow for fault tolerant and cost-effective solutions that are suitable for automotive applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Danial Karimi; Sahar Khaleghi; Hamidreza Behi; Hamidreza Beheshti; Md Hosen; Mohsen Akbarzadeh; Joeri Van Mierlo; Maitane Berecibar;doi: 10.3390/en14102907
A lithium-ion capacitor (LiC) is one of the most promising technologies for grid applications, which combines the energy storage mechanism of an electric double-layer capacitor (EDLC) and a lithium-ion battery (LiB). This article presents an optimal thermal management system (TMS) to extend the end of life (EoL) of LiC technology considering different active and passive cooling methods. The impact of different operating conditions and stress factors such as high temperature on the LiC capacity degradation is investigated. Later, optimal passive TMS employing a heat pipe cooling system (HPCS) is developed to control the LiC cell temperature. Finally, the effect of the proposed TMS on the lifetime extension of the LiC is explained. Moreover, this trend is compared to the active cooling system using liquid-cooled TMS (LCTMS). The results demonstrate that the LiC cell temperature can be controlled by employing a proper TMS during the cycle aging test under 150 A current rate. The cell’s top surface temperature is reduced by 11.7% using the HPCS. Moreover, by controlling the temperature of the cell at around 32.5 and 48.8 °C, the lifetime of the LiC would be extended by 51.7% and 16.5%, respectively, compared to the cycling of the LiC under natural convection (NC). In addition, the capacity degradation for the NC, HPCS, and LCTMS case studies are 90.4%, 92.5%, and 94.2%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Ekaterina Abramushkina; Assel Zhaksylyk; Thomas Geury; Mohamed El Baghdadi; Omar Hegazy;doi: 10.3390/en14164981
The development of electric vehicles (EVs) is an important step towards clean and green cities. An electric powertrain provides power to the vehicle and consists of a charger, a battery, an inverter, and a motor as the main components. Supplied by a battery pack, the automotive inverter manages the power of the motor. EVs require a highly efficient inverter, which satisfies low cost, size, and weight requirements. One approach to meeting these requirements is to use the new wide-bandgap (WBG) semiconductors, which are being widely investigated in the industry as an alternative to silicon switches. WBG devices have superior intrinsic properties, such as high thermal flux, of up to 120 W/cm2 (on average); junction temperature of 175–200 °C; blocking voltage limit of about 6.5 kV; switching frequency about 20-fold higher than that of Si; and up to 73% lower switching losses with a lower conduction voltage drop. This study presents a review of WBG-based inverter cooling systems to investigate trends in cooling techniques and changes associated with the use of WBG devices. The aim is to consider suitable cooling techniques for WBG inverters at different power levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:MDPI AG Smith, Tim; Trancossi, Michele; Vučinić, Dean; Bingham, Chris; Stewart, Paul;doi: 10.3390/en10040573
A new class of the all electric airship to globally transport both passengers and freight using a ‘feeder-cruiser’ concept, and powered by renewable electric energy, is considered. Specific focus is given to photo-electric harvesting as the primary energy source and the associated hydrogen-based energy storage systems. Furthermore, it is shown that the total PV output may be significantly increased by utilising cloud albedo effects. Appropriate power architectures and energy audits required for life support, and the propulsion and ancillary loads to support the continuous daily operation of the primary airship (cruiser) at stratospheric altitudes (circa 18 km), are also considered. The presented solution is substantially different from those of conventional aircraft due to the airship size and the inherent requirement to harvest and store sufficient energy during “daylight” operation, when subject to varying seasonal conditions and latitudes, to ensure its safe and continued operation during the corresponding varying “dark hours”. This is particularly apparent when the sizing of the proposed electrolyser is considered, as its size and mass increase nonlinearly with decreasing day-night duty. As such, a Unitized Regenerative Fuel Cell is proposed. For the first time the study also discusses the potential benefits of integrating the photo-voltaic cells into airship canopy structures utilising TENSAIRITY®-based elements in order to eliminate the requirements for separate inter-PV array wiring and the transport of low pressure hydrogen between fuel cells.
CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2017License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 261 Powered bymore_vert CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2017License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dominik Huber; Ander Martinez Alonso; Maeva Lavigne Philippot; Maarten Messagie;doi: 10.3390/en16114478
Even though eco-efficiency (EE) is already applied to various energy systems, so far, no study investigates in detail the hourly, marginal and seasonal impacts of a decentralized energy system. This study assesses the hourly EE of the Research Park Zellik (RPZ), located in the Brussels metropolitan area for 2022 composed of photovoltaic installations, wind turbines and batteries. A cradle-to-grave life cycle assessment (LCA) to identify the carbon footprint (CF) and a levelized cost of electricity (LCOE) calculation is conducted. An existing design optimization framework is applied to the RPZ. Consumption data are obtained from smart meters of five consumers at the RPZ on a one-hour time resolution for 2022 and upscaled based on the annual consumption of the RPZ. As the EE is presented as the sum of the CF and the LCOE, a lower EE corresponds to an economically and environmentally preferable energy system. In a comparative framework, the developed method is applied to two different case studies, namely, (i) to an energy system in Vega de Valcerce in Spain and (ii) to an energy system in Bèli Bartoka in Poland. The average EE of the RPZ energy system in 2022 is 0.15 per kWh, while the average EE of the Polish and Spanish energy systems are 1.48 and 0.36 per kWh, respectively. When analyzing four selected weeks, both the LCOE and CF of the RPZ energy system are driven by the consumption of the Belgian electricity grid mix. In contrast, due to the very low LCOE and CF of the renewable energy sources, in particular wind turbines, the RPZ energy system’s EE benefits and lies below the EE of the Belgium electricity grid mix.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Maximilian Henkel; Wout Weijtjens; Christof Devriendt;doi: 10.3390/en14227576
The design of monopile foundations for offshore wind turbines is most often driven by fatigue. With the foundation price contributing to the total price of a turbine structure by more than 30%, wind farm operators seek to gain knowledge about the amount of consumed fatigue. Monitoring concepts are developed to uncover structural reserves coming from conservative designs in order to prolong the lifetime of a turbine. Amongst promising concepts is a wide array of methods using in-situ measurement data and extrapolating these results to desired locations below water surface and even seabed using models. The modal decomposition algorithm is used for this purpose. The algorithm obtains modal amplitudes from acceleration and strain measurements. In the subsequent expansion step these amplitudes are expanded to virtual measurements at arbitrary locations. The algorithm uses a reduced order model that can be obtained from either a FE model or measurements. In this work, operational modal analysis is applied to obtain the required stress and deflection shapes for optimal validation of the method. Furthermore, the measurements that are used as input for the algorithms are constrained to measurements from the dry part of the substructure. However, with subsoil measurement data available from a dedicated campaign, even validation for locations below mud-line is possible. After reconstructing strain history in arbitrary locations on the substructure, fatigue assessment over various environmental and operational conditions is carried out. The technique is found capable of estimating fatigue with high precision for locations above and below seabed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Malaysia, Australia, AustraliaPublisher:MDPI AG Authors: Amirreza Naderipour; Zulkurnain Abdul-Malek; Mohammad Reza Miveh; Mohammad Jafar Hadidian Moghaddam; +2 AuthorsAmirreza Naderipour; Zulkurnain Abdul-Malek; Mohammad Reza Miveh; Mohammad Jafar Hadidian Moghaddam; Akhtar Kalam; Foad. H. Gandoman;doi: 10.3390/en11102629
Mitigation of harmonics for a grid-connected inverter is an important element to stabilize the control and the quality of current injected into the grid. This paper deals with the control method of a three-phase Grid-Connected Inverter (GCI) Photovoltaic (PV) system, which is based on the zero-sequence current adjuster. The proposed method is capable of removing the harmonic current and voltage without using any active and passive filters and without the knowledge of the microgrid topology and also impedances of distribution bands and loading conditions. This concept is adopted for the control of a Distributed Generator (DG) in the form of grid-connected inverter. The proposed control can be applied to the grid connected inverter of the PV. The fast dynamic response, simple design, stability, and fast transient response are the new main features of the proposed design. This paper also analyzes the circuit configuration effects on the grid connected inverter capability. The proposed control is used to demonstrate the improved stability and performance.
VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2018License: CC BYFull-Text: https://vuir.vu.edu.au/38093/Data sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VU Research Reposito... arrow_drop_down VU Research RepositoryArticle . 2018License: CC BYFull-Text: https://vuir.vu.edu.au/38093/Data sources: Bielefeld Academic Search Engine (BASE)Universiti Teknologi Malaysia: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11102629&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Arne Höltl; Cathy Macharis; Klaas De Brucker;doi: 10.3390/en11010020
This paper analyses decarbonisation scenarios for the European passenger car fleet in 2050. The scenarios have been developed using the backcasting approach and aim to reduce greenhouse gas (GHG) emissions of passenger cars to a level defined in the Transport White paper that is 60% below 1990 levels. Considering the emission levels of 2010, a yearly reduction of 1.7% is required in order to achieve the target. Car emissions were decomposed into the main emission factors of mobility, efficiency and carbon intensity. How these factors change over time depends on various external factors: the pace of technological improvements, the future role of cars in society’s mobility system and the priority given to decarbonising energy demand. The analysis showed that if car mobility and ownership continue to increase as expected in a ‘business as usual’ case, a share of 97% plug-in hybrid or battery electric vehicles might be required by 2050, together with a substantial decrease in greenhouse gas emission from electricity production. A transition to more advanced car technology such as automated driving, advanced batteries or lightweight materials in vehicle production would raise vehicle efficiency. Should car mobility continue at a high level, an early technology transition will be required.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11010020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Shahid Jaman; Sajib Chakraborty; Dai-Duong Tran; Thomas Geury; Mohamed El Baghdadi; Omar Hegazy;doi: 10.3390/en15155376
This article reviews the different topologies compatible with V2G feature and control approaches of integrated onboard charger (iOBC) systems for battery electric vehicles (BEVs). The integrated topologies are presented, analyzed, and compared in terms of component count, switching frequency, total harmonic distortion (THD), charging and traction efficiencies, controllability, reliability and multifunctionality. This paper also analyzes different control approaches for charging and traction modes. Moreover, the performance indices such as setting time, rise time, overshoot, etc., are summarized for charging and traction operations. Additionally, the feasibility of a Level 3 charging (AC fast charging with 400 Vac) of up to 44 kW iOBC is discussed in terms of converter efficiencies with different switching frequencies and switch technologies such as SiC and GaN. Finally, this paper explores the power density trends of different commercial integrated charging systems. The power density trend analysis could certainly help researchers and solution engineers in the automotive industry to select the suitable converter topology to achieve the projected power density.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Rémy Cleenwerck; Hakim Azaioud; Majid Vafaeipour; Thierry Coosemans; Jan Desmet;doi: 10.3390/en16073205
This paper presents an in-depth comparison of the benefits and limitations of using a low-voltage DC (LVDC) microgrid versus an AC microgrid with regard to the integration of low-carbon technologies. To this end, a novel approach for charging electric vehicles (EVs) on low-voltage distribution networks by utilizing an LVDC backbone is discussed. The global aim of the conducted study is to investigate the overall energy losses as well as voltage stability problems on DC and AC microgrids. Both architectures are assessed and compared to each other by performing a power flow analysis. Along this line, an actual low-voltage distribution network with various penetration levels of EVs, combined with photovoltaic (PV) systems and battery energy storage systems is considered. Obtained results indicate significant power quality improvements in voltage imbalances and conversion losses thanks to the proposed backbone. Moreover, the study concludes with a discussion of the impact level of EVs and PVs penetration degrees on energy efficiency, besides charging power levels’ impact on local self-consumption reduction of the studied system. The outcomes of the study can provide extensive insights for hybrid microgrid and EV charging infrastructure designers in a holistic manner in all aspects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16073205&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Mustapha Al Sakka; Thomas Geury; Mohamed El Baghdadi; Miguel Dhaens; Monzer Al Sakka; Omar Hegazy;doi: 10.3390/en15155529
With vehicle electrification and employment of X-by-wire technology, mechanical systems are being replaced by motor drives which improve the efficiency and performance of vehicular systems. However, motor drives have a lower power density and reliability compared to mechanical solutions. Multi-motor drives have the potential of mitigating both these drawbacks. In this paper, a state-of-the-art review of multi-motor drives and their application to vehicular systems is carried out. Firstly, the case of multi-motor systems in automotive applications is laid out by presenting the different vehicular systems comprising multiple motors. Secondly, multi-motor drive topologies with improved power density, reliability and fault tolerance capabilities are thoroughly analyzed. Finally, the topologies are assessed and compared in the context of automotive applications. The assessment verifies that multi-motor drives allow for fault tolerant and cost-effective solutions that are suitable for automotive applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Danial Karimi; Sahar Khaleghi; Hamidreza Behi; Hamidreza Beheshti; Md Hosen; Mohsen Akbarzadeh; Joeri Van Mierlo; Maitane Berecibar;doi: 10.3390/en14102907
A lithium-ion capacitor (LiC) is one of the most promising technologies for grid applications, which combines the energy storage mechanism of an electric double-layer capacitor (EDLC) and a lithium-ion battery (LiB). This article presents an optimal thermal management system (TMS) to extend the end of life (EoL) of LiC technology considering different active and passive cooling methods. The impact of different operating conditions and stress factors such as high temperature on the LiC capacity degradation is investigated. Later, optimal passive TMS employing a heat pipe cooling system (HPCS) is developed to control the LiC cell temperature. Finally, the effect of the proposed TMS on the lifetime extension of the LiC is explained. Moreover, this trend is compared to the active cooling system using liquid-cooled TMS (LCTMS). The results demonstrate that the LiC cell temperature can be controlled by employing a proper TMS during the cycle aging test under 150 A current rate. The cell’s top surface temperature is reduced by 11.7% using the HPCS. Moreover, by controlling the temperature of the cell at around 32.5 and 48.8 °C, the lifetime of the LiC would be extended by 51.7% and 16.5%, respectively, compared to the cycling of the LiC under natural convection (NC). In addition, the capacity degradation for the NC, HPCS, and LCTMS case studies are 90.4%, 92.5%, and 94.2%, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14102907&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Ekaterina Abramushkina; Assel Zhaksylyk; Thomas Geury; Mohamed El Baghdadi; Omar Hegazy;doi: 10.3390/en14164981
The development of electric vehicles (EVs) is an important step towards clean and green cities. An electric powertrain provides power to the vehicle and consists of a charger, a battery, an inverter, and a motor as the main components. Supplied by a battery pack, the automotive inverter manages the power of the motor. EVs require a highly efficient inverter, which satisfies low cost, size, and weight requirements. One approach to meeting these requirements is to use the new wide-bandgap (WBG) semiconductors, which are being widely investigated in the industry as an alternative to silicon switches. WBG devices have superior intrinsic properties, such as high thermal flux, of up to 120 W/cm2 (on average); junction temperature of 175–200 °C; blocking voltage limit of about 6.5 kV; switching frequency about 20-fold higher than that of Si; and up to 73% lower switching losses with a lower conduction voltage drop. This study presents a review of WBG-based inverter cooling systems to investigate trends in cooling techniques and changes associated with the use of WBG devices. The aim is to consider suitable cooling techniques for WBG inverters at different power levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14164981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:MDPI AG Smith, Tim; Trancossi, Michele; Vučinić, Dean; Bingham, Chris; Stewart, Paul;doi: 10.3390/en10040573
A new class of the all electric airship to globally transport both passengers and freight using a ‘feeder-cruiser’ concept, and powered by renewable electric energy, is considered. Specific focus is given to photo-electric harvesting as the primary energy source and the associated hydrogen-based energy storage systems. Furthermore, it is shown that the total PV output may be significantly increased by utilising cloud albedo effects. Appropriate power architectures and energy audits required for life support, and the propulsion and ancillary loads to support the continuous daily operation of the primary airship (cruiser) at stratospheric altitudes (circa 18 km), are also considered. The presented solution is substantially different from those of conventional aircraft due to the airship size and the inherent requirement to harvest and store sufficient energy during “daylight” operation, when subject to varying seasonal conditions and latitudes, to ensure its safe and continued operation during the corresponding varying “dark hours”. This is particularly apparent when the sizing of the proposed electrolyser is considered, as its size and mass increase nonlinearly with decreasing day-night duty. As such, a Unitized Regenerative Fuel Cell is proposed. For the first time the study also discusses the potential benefits of integrating the photo-voltaic cells into airship canopy structures utilising TENSAIRITY®-based elements in order to eliminate the requirements for separate inter-PV array wiring and the transport of low pressure hydrogen between fuel cells.
CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2017License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 261 Powered bymore_vert CORE arrow_drop_down Sheffield Hallam University Research ArchiveArticle . 2017License: CC BY NCData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Research at Derby (University of Derby)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10040573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Dominik Huber; Ander Martinez Alonso; Maeva Lavigne Philippot; Maarten Messagie;doi: 10.3390/en16114478
Even though eco-efficiency (EE) is already applied to various energy systems, so far, no study investigates in detail the hourly, marginal and seasonal impacts of a decentralized energy system. This study assesses the hourly EE of the Research Park Zellik (RPZ), located in the Brussels metropolitan area for 2022 composed of photovoltaic installations, wind turbines and batteries. A cradle-to-grave life cycle assessment (LCA) to identify the carbon footprint (CF) and a levelized cost of electricity (LCOE) calculation is conducted. An existing design optimization framework is applied to the RPZ. Consumption data are obtained from smart meters of five consumers at the RPZ on a one-hour time resolution for 2022 and upscaled based on the annual consumption of the RPZ. As the EE is presented as the sum of the CF and the LCOE, a lower EE corresponds to an economically and environmentally preferable energy system. In a comparative framework, the developed method is applied to two different case studies, namely, (i) to an energy system in Vega de Valcerce in Spain and (ii) to an energy system in Bèli Bartoka in Poland. The average EE of the RPZ energy system in 2022 is 0.15 per kWh, while the average EE of the Polish and Spanish energy systems are 1.48 and 0.36 per kWh, respectively. When analyzing four selected weeks, both the LCOE and CF of the RPZ energy system are driven by the consumption of the Belgian electricity grid mix. In contrast, due to the very low LCOE and CF of the renewable energy sources, in particular wind turbines, the RPZ energy system’s EE benefits and lies below the EE of the Belgium electricity grid mix.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16114478&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors: Maximilian Henkel; Wout Weijtjens; Christof Devriendt;doi: 10.3390/en14227576
The design of monopile foundations for offshore wind turbines is most often driven by fatigue. With the foundation price contributing to the total price of a turbine structure by more than 30%, wind farm operators seek to gain knowledge about the amount of consumed fatigue. Monitoring concepts are developed to uncover structural reserves coming from conservative designs in order to prolong the lifetime of a turbine. Amongst promising concepts is a wide array of methods using in-situ measurement data and extrapolating these results to desired locations below water surface and even seabed using models. The modal decomposition algorithm is used for this purpose. The algorithm obtains modal amplitudes from acceleration and strain measurements. In the subsequent expansion step these amplitudes are expanded to virtual measurements at arbitrary locations. The algorithm uses a reduced order model that can be obtained from either a FE model or measurements. In this work, operational modal analysis is applied to obtain the required stress and deflection shapes for optimal validation of the method. Furthermore, the measurements that are used as input for the algorithms are constrained to measurements from the dry part of the substructure. However, with subsoil measurement data available from a dedicated campaign, even validation for locations below mud-line is possible. After reconstructing strain history in arbitrary locations on the substructure, fatigue assessment over various environmental and operational conditions is carried out. The technique is found capable of estimating fatigue with high precision for locations above and below seabed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227576&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu