- home
- Advanced Search
Filters
Clear All- Energy Research
- BE
- Energies
- Nottingham Trent University
- Energy Research
- BE
- Energies
- Nottingham Trent University
description Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:MDPI AG Authors:Xiang Zhang;
Yunlong Chen; Yves Mollet; Jiaqiang Yang; +1 AuthorsXiang Zhang
Xiang Zhang in OpenAIREXiang Zhang;
Yunlong Chen; Yves Mollet; Jiaqiang Yang;Xiang Zhang
Xiang Zhang in OpenAIREJohan Gyselinck;
Johan Gyselinck
Johan Gyselinck in OpenAIREHigh-speed Permanent-Magnet Synchronous Motors/Generators (PMSMs/Gs) in a Flywheel Energy Storage System (FESS) are faced with high cross-coupling voltages and low switching-to-fundamental frequency ratios. High cross-coupling voltages between d-q axis current loops lead to transient current errors, which is more serious at lower switching-to-fundamental-frequency ratios. If the delays are not properly considered during the current controller design in a digital control system, the low switching-to-fundamental-frequency ratios may result in oscillatory or unstable responses. In this study, an accurate discrete current controller for high-speed PMSMs/Gs is proposed based on an accurate discrete model that takes the phase and magnitude errors generated during the sampling period into consideration, and an Extended State Observer (ESO) is applied to estimate and compensate the back EMF error. The cross-coupling problem is well settled, and the current loop dynamic at lower switching-to-fundamental frequency ratios is improved. Finally, the proposed discrete controller is validated on a 12,000 rpm PMSM/G prototype.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13061458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:MDPI AG Authors:Thomas Geury;
Thomas Geury
Thomas Geury in OpenAIRESonia Ferreira Pinto;
Sonia Ferreira Pinto
Sonia Ferreira Pinto in OpenAIREJohan Gyselinck;
Johan Gyselinck
Johan Gyselinck in OpenAIREPatrick Wheeler;
Patrick Wheeler
Patrick Wheeler in OpenAIREThis paper proposes an Indirect Matrix Converter (IMC)-based grid-tied Photovoltaic (PV) system for Smart Grids (SGs). The PV array injects current in the ‘dc link’ of the IMC through an inductive link, and is connected to the SG with shunt and series connections, allowing for the compensation of current- and voltage-related Power Quality (PQ) issues, respectively, for the sensitive loads and the SG connection. A direct sliding mode-based controller is proposed to guarantee nearly sinusoidal currents in the connection to the SG, and sinusoidal voltages guaranteeing compliance with international standards, when supplying the sensitive loads. Additionally, a novel control approach for the ‘dc link’ voltage is synthesised to allow for the control of both the PV array current and the power flow to the SG. To guarantee the semiconductors safe commutation an asynchronous commutation strategy is derived. Simulation and experimental results show that the proposed system significantly improves PQ in the SG, minimizing the total harmonic distortion of the currents injected in the SG, and guaranteeing the quality of the voltage supplied to the sensitive loads, even in the occurrence of voltage sags or overvoltages.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu