- home
- Advanced Search
- Energy Research
- Open Access
- Restricted
- BE
- University of Liège
- Energy Research
- Open Access
- Restricted
- BE
- University of Liège
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXAuthors:Thiery, Wim;
Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; +33 AuthorsThiery, Wim
Thiery, Wim in OpenAIREThiery, Wim;
Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;Thiery, Wim
Thiery, Wim in OpenAIREThis data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors:Nandar Hlaing;
Nandar Hlaing
Nandar Hlaing in OpenAIREPablo G. Morato;
Pablo G. Morato
Pablo G. Morato in OpenAIREThe dataset contains two separate files: NREL_Trainset40000.mat and NREL_Testset10000.mat. The stored input enviormental and operational parameters are: Significant wave height, m (Hs), peak period, s (Tp), wave direction, deg (Wave_dir); Wind speed, m/s (Vw_mean, Vw_std), wind direction, deg (Wdir_mean, Wdir_std); Turbine rotational speed, rpm (Rpm_mean, Rpm_std), blade pitch, deg (Pitch_mean, Pitch_std), turbine yaw angle, deg (Yaw_mean, Yaw_std). The output of the simulations includes the time series, sampled at 50 Hz, of the reaction force and bending moments at the mudline: Fzz, N Mxx, Nm Myy, Nm contact: nandar.hlaing@uliege.be {"references": ["OpenFAST. Availabe at https://github.com/OpenFAST/openfast.\"", "Jonkman, K., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development. 1617 Cole Boulevard, Golden, Colorado 80401-3393: National Renewable Energy Laboratory.", "Jonkman, J., & Musial, W. (2010). Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment. 1617 Cole Boulevard, Golden, Colorado 80401-3393: National Renewable Energy Laboratory."]} - Funded by Belgian Energy Transition Fund (FPS Economy) through "PhairywinD" project. - Computing equipment facilitated by "Consortium des ��quipements de Calcul Intensif".
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5957393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 237visibility views 237 download downloads 284 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5957393&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Copernicus GmbH Authors:Elie Kadoche;
Pascal Bianchi; Florence Carton; Philippe Ciblat; +1 AuthorsElie Kadoche
Elie Kadoche in OpenAIREElie Kadoche;
Pascal Bianchi; Florence Carton; Philippe Ciblat; Damien Ernst;Elie Kadoche
Elie Kadoche in OpenAIREAbstract. Wake steering is a technique that optimizes the energy production of a wind farm by employing yaw control to misalign upstream turbines with the incoming wind direction. This work highlights the important dependence between wind direction variations and wake steering optimization. The problem is formalized over time as the succession of multiple steady-state yaw control problems interconnected by the rotational constraints of the turbines and the evolution of the wind. Then, this work proposes a reformulation of the yaw optimization problem of each time step by augmenting the objective function by a new heuristic based on a wind prediction. The heuristic acts as a penalization for the optimization, encouraging solutions that will guarantee future energy production. Finally, a synthetic sensitivity analysis of the wind direction variations and wake steering optimization is conducted. Because of the rotational constraints of the turbines, as the magnitude of the wind direction fluctuations increases, the importance of considering wind prediction in a steady-state optimization is empirically demonstrated. The heuristic proposed in this work greatly improves the performance of controllers and significantly reduces the complexity of the original sequential decision problem by decreasing the number of decision variables.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-9-1577-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-9-1577-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2021Publisher:MDPI AG Authors:Ismaïl Saadi;
Roger Aganze; Mehdi Moeinaddini; Zohreh Asadi-Shekari; +1 AuthorsIsmaïl Saadi
Ismaïl Saadi in OpenAIREIsmaïl Saadi;
Roger Aganze; Mehdi Moeinaddini; Zohreh Asadi-Shekari;Ismaïl Saadi
Ismaïl Saadi in OpenAIREMario Cools;
Mario Cools
Mario Cools in OpenAIREdoi: 10.3390/su14010206
Walkability has become a research topic of great concern for preserving public health, especially in the era of the COVID-19 outbreak. Today more than ever, urban and transport policies, constrained by social distancing measures and travel restrictions, must be conceptualized and implemented with a particular emphasis on sustainable walkability. Most of the walkability models apply observation and subjective methods to measure walkability, whereas few studies address walkability based on sense perception. To fill this gap, we aim at investigating the perceived neighbourhood walkability (PNW) based on sense perception in a neighbourhood of Brussels. We designed a survey that integrates 22 items grouped into 5 dimensions (cleanness, visual aesthetics, landscape and nature, feeling of pressure, feeling of safety), as well as the socio-demographic attributes of the participants. Using various statistical methods, we show that socio-demographics have almost no effects on perceived neighbourhood walkability. Nonetheless, we found significant differences between groups of different educational backgrounds. Furthermore, using a binomial regression model, we found strong associations between PNW and at least one item from each grouping dimension. Finally, we show that based on a deep neural network for classification, the items have good predictive capabilities (78% of classification accuracy). These findings can help integrate sense perception into objective measurement methods of walkable environments. Additionally, policy recommendations should be targeted based on differences of perception across socio-demographic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14010206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors:Aristidou, P;
Aristidou, P
Aristidou, P in OpenAIREValverde, G;
Van Cutsem, T;Valverde, G
Valverde, G in OpenAIREA case study dealing with long-term voltage instability in systems hosting active distribution networks (DN) is reported in this paper. It anticipates future situations with high penetration of dispersed generation (DG), where the latter are used to keep distribution voltages within desired limits, in complement to load tap changers. The interactions between transmission and active DN are investigated on a 3108-bus test system. It involves transmission grid, large generators, and 40 DN, each with DG steered by a controller inspired by model predictive control. The reported simulations show the impact of distribution network voltage restoration, as well as the benefit of load voltage reduction actuated by the dispersed generators.
CORE arrow_drop_down IEEE Transactions on Smart GridArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2474815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 12visibility views 12 download downloads 350 Powered bymore_vert CORE arrow_drop_down IEEE Transactions on Smart GridArticle . 2017 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2015.2474815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 DenmarkPublisher:Springer Science and Business Media LLC Authors:Olivier Dumont;
Olivier Dumont
Olivier Dumont in OpenAIRECarolina Carmo;
Emelines Georges;Carolina Carmo
Carolina Carmo in OpenAIRESylvain Quoilin;
+1 AuthorsSylvain Quoilin
Sylvain Quoilin in OpenAIREOlivier Dumont;
Olivier Dumont
Olivier Dumont in OpenAIRECarolina Carmo;
Emelines Georges;Carolina Carmo
Carolina Carmo in OpenAIRESylvain Quoilin;
Sylvain Quoilin
Sylvain Quoilin in OpenAIREVincent Lemort;
Vincent Lemort
Vincent Lemort in OpenAIRENet zero energy buildings and positive energy buildings are gaining more and more interest. This paper evaluates the impact of the integration of a battery in a positive energy building used to increase its self-consumption of electricity. Parametric studies are carried out by varying the building envelope characteristics, the power supply system, the climate, the lighting and appliances profiles, the roof tilt angle, the battery size and the electricity tariffs, leading to 3200 cases. The analysis is performed on an annual basis in terms of self-consumption and self-production rate and payback period. It is shown that the battery size leading to the minimum payback period within the input range is comprised between 2.6 and 4.5 kWh. The lowest payback periods, (~7 years), are reached with a well-insulated building envelope, a high lightning and appliance consumption, a low feed-in tariff and a 3.7 kWh battery. Finally, simple correlations (based on the feed-in tariff, the annual electrical consumption and production) to predict the optimal size of battery and the lowest payback period are proposed.
International Journa... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: COREInternational Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-016-0224-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: COREInternational Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-016-0224-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2020Embargo end date: 01 Jan 2018Publisher:Elsevier BV Authors:Mevludin Glavic;
Lucian Balea; Robin Henry; Marc Le Du; +6 AuthorsMevludin Glavic
Mevludin Glavic in OpenAIREMevludin Glavic;
Lucian Balea; Robin Henry; Marc Le Du; Damien Ernst;Mevludin Glavic
Mevludin Glavic in OpenAIREXavier Fettweis;
Raphaël Fonteneau;Xavier Fettweis
Xavier Fettweis in OpenAIREMathias Berger;
David-Constantin Radu; Patrick Panciatici;Mathias Berger
Mathias Berger in OpenAIREarXiv: 1812.02809
This paper proposes a systematic framework to assess the complementarity of renewable resources over arbitrary geographical scopes and temporal scales which is particularly well-suited to exploit very large data sets of climatological data. The concept of critical time windows is introduced, and a spatio-temporal criticality indicator is proposed, consisting in a parametrised family of scalar indicators quantifying the complementarity between renewable resources in both space and time. The criticality indicator is leveraged to devise a family of optimisation problems identifying sets of locations with maximum complementarity under arbitrary geographical deployment constraints. The applicability of the framework is shown in a case study investigating the complementarity between the wind regimes in continental western Europe and southern Greenland, and its usefulness in a power system planning context is demonstrated. Besides showing that the occurrence of low wind power production events can be significantly reduced on a regional scale by exploiting diversity in local wind patterns, results highlight the fact that aggregating wind power production sites located on different continents may result in a lower occurrence of system-wide low wind power production events and indicate potential benefits of intercontinental electrical interconnections.
Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataAuthors:Jucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
+115 AuthorsCoomes, David
Coomes, David in OpenAIREJucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
Caspersen, John;Coomes, David
Coomes, David in OpenAIREAli, Arshad;
Panzou, Grace Jopaul Loubota; Feldpausch, Ted R;Ali, Arshad
Ali, Arshad in OpenAIREFalster, Daniel;
Usoltsev, Vladimir A; Adu-Bredu, Stephen;Falster, Daniel
Falster, Daniel in OpenAIREAlves, Luciana F;
Aminpour, Mohammad;Alves, Luciana F
Alves, Luciana F in OpenAIREAngoboy, Ilondea B;
Angoboy, Ilondea B
Angoboy, Ilondea B in OpenAIREAnten, Niels PR;
Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan;Anten, Niels PR
Anten, Niels PR in OpenAIREBalvanera, Patricia;
Banin, Lindsay;Balvanera, Patricia
Balvanera, Patricia in OpenAIREBarbier, Nicolas;
Barbier, Nicolas
Barbier, Nicolas in OpenAIREBattles, John J;
Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev;Battles, John J
Battles, John J in OpenAIREDai, Jingyu;
Dalponte, Michele;Dai, Jingyu
Dai, Jingyu in OpenAIREDimobe, Kangbéni;
Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A;Dimobe, Kangbéni
Dimobe, Kangbéni in OpenAIREEnríquez, Moisés;
Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric;Enríquez, Moisés
Enríquez, Moisés in OpenAIREForrester, David I;
Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat;Forrester, David I
Forrester, David I in OpenAIREHutley, Lindsay B;
Hutley, Lindsay B
Hutley, Lindsay B in OpenAIREIchie, Tomoaki;
Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan;Ichie, Tomoaki
Ichie, Tomoaki in OpenAIRELarsary, Maryam Kazempour;
Larsary, Maryam Kazempour
Larsary, Maryam Kazempour in OpenAIREKenzo, Tanaka;
Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem;Kenzo, Tanaka
Kenzo, Tanaka in OpenAIREKvasnica, Jakub;
Kvasnica, Jakub
Kvasnica, Jakub in OpenAIRELin, Siliang;
Lin, Siliang
Lin, Siliang in OpenAIRELines, Emily;
Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L;Lines, Emily
Lines, Emily in OpenAIREMattsson, Eskil;
Mattsson, Eskil
Mattsson, Eskil in OpenAIREMatula, Radim;
Matula, Radim
Matula, Radim in OpenAIREMeave, Jorge A;
Meave, Jorge A
Meave, Jorge A in OpenAIREMensah, Sylvanus;
Mi, Xiangcheng; Momo, Stéphane;Mensah, Sylvanus
Mensah, Sylvanus in OpenAIREMoncrieff, Glenn R;
Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C;Moncrieff, Glenn R
Moncrieff, Glenn R in OpenAIRERyan, Casey;
Sanaei, Anvar; Sanger, Jennifer;Ryan, Casey
Ryan, Casey in OpenAIRESchlund, Michael;
Schlund, Michael
Schlund, Michael in OpenAIRESellan, Giacomo;
Sellan, Giacomo
Sellan, Giacomo in OpenAIREShenkin, Alexander;
Sonké, Bonaventure; Sterck, Frank J;Shenkin, Alexander
Shenkin, Alexander in OpenAIRESvátek, Martin;
Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C;Svátek, Martin
Svátek, Martin in OpenAIREVovides, Alejandra G;
Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan;Vovides, Alejandra G
Vovides, Alejandra G in OpenAIREYamada, Toshihiro;
Zavala, Miguel A;Yamada, Toshihiro
Yamada, Toshihiro in OpenAIREpmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 15 Aug 2021Publisher:Harvard Dataverse doi: 10.7910/dvn/ud556v
Two building performance simulation models are created in EnergyPlus to benchmark the average energy consumption and building characteristics. The validity of the estimate has been further checked against the public statistics and verified through model calibration and utility bill comparison.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/ud556v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/ud556v&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Bertrand Cornélusse; David Vangulick;Mevludin Glavic;
Damien Ernst;Mevludin Glavic
Mevludin Glavic in OpenAIREAbstract We propose a pragmatic procedure to facilitate the connection process of Distributed Generation (DG) with reference to the European regulatory framework where Distribution System Operators (DSOs) are, except in specific cases, not allowed to own their generation. The procedure is termed Global Capacity ANnouncement (GCAN) and is intended to compute the estimates of maximum generation connection amount at appropriate substations in a distribution system, to help generation connection decisions. The pragmatism of the proposed procedure stems from its reliance on the tools that are routinely used in distribution systems planning and operation, and their use such that the possibilities of network sterilization are avoided. The tools involved include: long-term load forecasting, long-term planning of network extension/reinforcement, network reconfiguration, and power flow. Network sterilizing substations are identified through repeated power flow computations. The proposed procedure is supported by results using an artificially created 5-bus test system, the IEEE 33-bus test system, and a part of real-life distribution system of ORES (a Belgian DSO serving a large portion of the Walloon region in Belgium).
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticleLicense: Elsevier Non-CommercialData sources: UnpayWallSustainable Energy Grids and NetworksArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2015.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticleLicense: Elsevier Non-CommercialData sources: UnpayWallSustainable Energy Grids and NetworksArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2015.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu