- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- 11. Sustainability
- 15. Life on land
- BE
- Energy Research
- Closed Access
- Restricted
- 11. Sustainability
- 15. Life on land
- BE
description Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:Elsevier BV Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R.;handle: 10067/964440151162165141
Biomass is expected to play an increasingly significant role in the ‘greening’ of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2011Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2011Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Anping Chen; Ling Huang; Qiang Liu; Shilong Piao;doi: 10.1111/gcb.15542
pmid: 33528057
AbstractVegetation productivity first increases and then decreases with temperature; and temperature corresponding to the maximum productivity is called optimal temperature (Topt). In this study, we used satellite derived near‐infrared reflectance of vegetation (NIRv) data to map Topt of vegetation productivity at the spatial resolution of 0.1° on the Tibetan Plateau (TP), one of most sensitive regions in the climate system. The average Topt of non‐forest vegetation on the TP is about 14.7°C, significantly lower than the Topt value used in current ecosystem models. A remarkable geographical heterogeneity in Topt is observed over the TP. Higher Topt values generally appear in the north‐eastern TP, while the south‐western TP has relatively lower Topt (<10°C), in line with the difference of climate conditions and topography across different regions. Spatially, Topt tends to decrease by 0.41°C per 100 m increase in elevation, faster than the elevational elapse rate of growing season temperature, implying a potential CO2 regulation of Topt in addition to temperature acclimation. Topt increases by 0.66°C for each 1°C of rising mean annual temperature as a result of vegetation acclimation to climate change. However, at least at the decadal scale, there is no significant change in Topt between 2000s and 2010s, suggesting that the Topt climate acclimation may not keep up with the warming rate. Finally, future (2091–2100) warming could be close to and even surpass Topt on the TP under different RCP scenarios without considering potential climate acclimation. Our analyses imply that the temperature tipping point when the impact of future warming shifts from positive to negative on the TP is greatly overestimated by current vegetation models. Future research needs to include varying thermal and CO2 acclimation effects on Topt across different time scales in vegetation models.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 BelgiumPublisher:Elsevier BV Lettens, S.; Muys, B.; Ceulemans, R.; Moons, E.; Garcia, J.; Coppin, P.;handle: 10067/413950151162165141
Abstract The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr . Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(02)00104-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(02)00104-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Marie-Leen Verdonck; Matthias Demuzere; Hans Hooyberghs; Frederik Priem; Frieke Van Coillie;pmid: 31437706
Urban residents are exposed to higher levels of heat stress in comparison to the rural population. As this phenomenon could be enhanced by both global greenhouse gas emissions (GHG) and urban expansion, urban planners and policymakers should integrate both in their assessment. One way to consider these two concepts is by using urban climate models at a high resolution. In this study, the influence of urban expansion and GHG emission scenarios is evaluated at 100 m spatial resolution for the city of Brussels (Belgium) in the near (2031-2050) and far (2081-2100) future. Two possible urban planning scenarios (translated into local climate zones, LCZs) in combination with two representative concentration pathways (RCPs 4.5 and 8.5) have been implemented in the urban climate model UrbClim. The projections show that the influence of GHG emissions trumps urban planning measures in each period. In the near future, no large differences are seen between the RCP scenarios; in the far future, both heat stress and risk values are twice as large for RCP 8.5 compared to RCP 4.5. Depending on the GHG scenario and the LCZ type, heat stress is projected to increase by a factor of 10 by 2090 compared to the present-day climate and urban planning conditions. The imprint of vulnerability and exposure is clearly visible in the heat risk assessment, leading to very high levels of heat risk, most notably for the North Western part of the Brussels Capital Region. The results demonstrate the need for mitigation and adaptation plans at different policy levels that strive for lower GHG emissions and the development of sustainable urban areas safeguarding livability in cities.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Michał Preisner; Marzena Smol; Mika Horttanainen; Ivan Deviatkin; Jouni Havukainen; Maris Klavins; Ruta Ozola-Davidane; Jolita Kruopienė; Beata Szatkowska; Lise Appels; Sofie Houtmeyers; Kati Roosalu;pmid: 34923410
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Jo Dewulf; Steven De Meester; Sofie Huysman; Jonas De Schaepmeester; Kim Ragaert;Abstract A linear economy approach results in many environmental challenges: resources become depleted and end up as waste and emissions. One of the key strategies to overcome these problems is using waste as a resource, i.e. evolving toward a circular economy. To monitor this transition, suitable indicators are needed that focus on sustainability issues whilst taking into account the technical reality. In this paper, we develop such an indicator to quantify the circular economy performance of different plastic waste treatment options. This indicator is based on the technical quality of the plastic waste stream and evaluates resource consumption by using the Cumulative Exergy Extraction from the Natural Environment (CEENE) method. To illustrate the use of this new indicator, it was applied in a case study on post-industrial plastic waste treatment. The results show that the indicator can be a very useful approach to guide waste streams towards their optimal valorization option, based on quality of the waste flow and the environmental benefit of the different options.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 318 citations 318 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Stéphane, Pepin; Sarah, Radulovic; Rob, Wiegers; Jelena, Mrdakovic Popic; Antti, Kallio; Marie, Huss; Fidel, Grandia; Alba, Valls; Aina, Bruno;doi: 10.1093/rpd/ncad077
pmid: 37225184
AbstractIn large parts of Europe, the Chernobyl accident of 1986 caused fallout of Cs-137. This led to the uptake of Cs-137 in trees or other materials used for bioenergy production or as firewood for domestic purposes. This Cs-137 may concentrate in the ashes of the combustion process in such a way that the clearance level of 100 Bq per kg, defined in Directive 2013/59/Euratom (EU BSS), may consequently be exceeded. There is currently no clear consensus in Europe regarding the regulatory approach to this issue: should the import and use of Cs-137 contaminated biomass and its ashes be considered as a planned exposure situation or rather as an existing exposure situation? If considered as an existing exposure situation, which reference level should be applied? We compare the approaches in various European countries, such as Finland, Norway, Sweden, Belgium and the Netherlands. Results of a recent measurement campaign performed in Belgium on firewood imported from Belarus, Ukraine and other countries show a quite large range of Cs-137 activity concentration in firewood. Analysis of samples from biomass combustion confirms that the clearance level of 100 Bq per kg Cs-137 may be exceeded even when the activity concentration in the initial pellet is trivial. A review of dose-assessment studies performed by STUK and from the literature is presented. The general context of biomass energy production is sketched: for instance, in the Netherlands, 40 large biomass firing plants (capacity > 10 MW) are operational and some 20 more are already planned. The fly ashes from the biomass combustion may be a valuable resource for the construction industry, and the issue of Cs-137 contamination is connected with the requirements of the EU BSS regarding the natural radioactivity of building materials. Assessing the impact of Cs-137 contamination and clarifying regulations in the frame of a graded approach are important elements in this context.
Radiation Protection... arrow_drop_down Radiation Protection DosimetryArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/rpd/ncad077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radiation Protection... arrow_drop_down Radiation Protection DosimetryArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/rpd/ncad077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley C. Bakker; Brian K. Sorrell; Peter M. van Bodegom; Rien Aerts; Annelies Oosthoek;In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more idiosyncratically, with different parameters responding to different treatments. These results show that partial submergence and soil flooding are two very different stressors to which species respond in different ways, and that their effects on physiology, survival, and growth are interactive. Understanding species zonation with water regimes can be improved by a better appreciation of how these factors affect plant metabolism independently and interactively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0390.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0390.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Hossein Askari; Adam Ng; Adam Ng; Mustafa Disli;Given the devastating effects of global warming, the problem of human-induced climate change, and in particular carbon dioxide emissions, has been high on the global policy agenda. In this study, we examine the relationship between national culture, carbon dioxide emissions, and economic growth in the framework of the Environmental Kuznets Curve (EKC). Applying system GMM panel estimator across 69 developed and developing countries, we confirm the existence of EKC and show that culture significantly affects the income-emission relationship. Moreover, the effects of the six cultural dimensions on EKC can be collapsed into two: (i) masculinity, power distance and indulgence move the EKC upward and shift the income turning point to the left; and (ii) individualism, uncertainty, and long-term orientation move the EKC downward while shifting the income turning point to the right. The impact of culture on EKC remains also robust for alternative specifications. Future policy and global initiatives in sustainable development should incorporate the multidimensional impact of culture on national behavior towards environment and economic growth, a relationship that has been largely ignored in economic decision-making models.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Hussain Kazmi; Íngrid Munné-Collado; Fahad Mehmood; Tahir Abbas Syed; Johan Driesen;Abstract Energy communities will play a central role in the sustainable energy transition by helping inform and engage end users to become more responsible consumers of energy. However, the true potential of energy communities can only be unlocked at scale. This scalability requires data-driven solutions that model not just the behavior of building occupants but also of energy flexible resources in buildings, distributed generation and grid conditions in general. This understanding can then be utilized to improve the design and operation of energy communities in a variety of real-world settings. However, in practice, collecting and analyzing the data necessary to realize these objectives forms a large part of such projects, and is often seen as a prohibitive stumbling block. Furthermore, without a proper understanding of the local context, these projects are often at risk of failure due to misplaced expectations. However, this process can be considerably accelerated by utilizing open source datasets and models from related projects, which have been carried out in the past. Likewise, a number of open source, general-purpose tools exist that can help practitioners design and operate LECs in a near-optimal manner. These resources are important because they not only help ground expectations, they also provide LECs and other relevant stakeholders, including utilities and distribution system operators, with much-needed visibility on future energy and cash flows. This review provides a detailed overview of these open-source datasets, models and tools, and the many ways they can be utilized in optimally designing and operating real-world energy communities. It also highlights some of the most important limitations in currently available open source resources, and points to future research directions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 90download downloads 90 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 BelgiumPublisher:Elsevier BV Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R.;handle: 10067/964440151162165141
Biomass is expected to play an increasingly significant role in the ‘greening’ of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2011Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefRenewable and Sustainable Energy ReviewsArticle . 2011Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.07.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors: Anping Chen; Ling Huang; Qiang Liu; Shilong Piao;doi: 10.1111/gcb.15542
pmid: 33528057
AbstractVegetation productivity first increases and then decreases with temperature; and temperature corresponding to the maximum productivity is called optimal temperature (Topt). In this study, we used satellite derived near‐infrared reflectance of vegetation (NIRv) data to map Topt of vegetation productivity at the spatial resolution of 0.1° on the Tibetan Plateau (TP), one of most sensitive regions in the climate system. The average Topt of non‐forest vegetation on the TP is about 14.7°C, significantly lower than the Topt value used in current ecosystem models. A remarkable geographical heterogeneity in Topt is observed over the TP. Higher Topt values generally appear in the north‐eastern TP, while the south‐western TP has relatively lower Topt (<10°C), in line with the difference of climate conditions and topography across different regions. Spatially, Topt tends to decrease by 0.41°C per 100 m increase in elevation, faster than the elevational elapse rate of growing season temperature, implying a potential CO2 regulation of Topt in addition to temperature acclimation. Topt increases by 0.66°C for each 1°C of rising mean annual temperature as a result of vegetation acclimation to climate change. However, at least at the decadal scale, there is no significant change in Topt between 2000s and 2010s, suggesting that the Topt climate acclimation may not keep up with the warming rate. Finally, future (2091–2100) warming could be close to and even surpass Topt on the TP under different RCP scenarios without considering potential climate acclimation. Our analyses imply that the temperature tipping point when the impact of future warming shifts from positive to negative on the TP is greatly overestimated by current vegetation models. Future research needs to include varying thermal and CO2 acclimation effects on Topt across different time scales in vegetation models.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 BelgiumPublisher:Elsevier BV Lettens, S.; Muys, B.; Ceulemans, R.; Moons, E.; Garcia, J.; Coppin, P.;handle: 10067/413950151162165141
Abstract The use of bio-energy crops for electricity production is considered an effective means to mitigate the greenhouse effect, mainly due to its ability to substitute fossil fuels. A whole range of crops qualify for bio-energy production and a rational choice is not readily made. This paper evaluates the energy and greenhouse gas balance of a mixed indigenous hardwood coppice as an extensive, low-input bio-energy crop. The impact on fossil energy use and greenhouse gas emission is calculated and discussed by comparing its life cycle (cultivation, processing and conversion into energy) with two conventional bio-energy crops (short rotation systems of willow and Miscanthus). For each life cycle process, the flows of fossil energy and greenhouse gas that are created for the production of one functional unit are calculated. The results show that low-input bio-energy crops use comparatively less fossil fuel and avoid more greenhouse gas emission per unit of produced energy than conventional bio-energy crops during the first 100 yr . Where the mixed coppice system avoids up till 0.13 t CO 2 eq./GJ, Miscanthus does not exceed 0.07 t CO 2 eq./GJ. After 100 yr their performances become comparable, amounting to 0.05 t CO 2 eq./ha/GJ. However, if the land surface itself is chosen as a functional unit, conventional crops perform better with respect to mitigating the greenhouse effect. Miscanthus avoids a maximum of 12.9 t CO 2 eq./ha/yr, while mixed coppice attains 9.5 t CO 2 eq./ha/yr at the most.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(02)00104-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0961-9534(02)00104-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Marie-Leen Verdonck; Matthias Demuzere; Hans Hooyberghs; Frederik Priem; Frieke Van Coillie;pmid: 31437706
Urban residents are exposed to higher levels of heat stress in comparison to the rural population. As this phenomenon could be enhanced by both global greenhouse gas emissions (GHG) and urban expansion, urban planners and policymakers should integrate both in their assessment. One way to consider these two concepts is by using urban climate models at a high resolution. In this study, the influence of urban expansion and GHG emission scenarios is evaluated at 100 m spatial resolution for the city of Brussels (Belgium) in the near (2031-2050) and far (2081-2100) future. Two possible urban planning scenarios (translated into local climate zones, LCZs) in combination with two representative concentration pathways (RCPs 4.5 and 8.5) have been implemented in the urban climate model UrbClim. The projections show that the influence of GHG emissions trumps urban planning measures in each period. In the near future, no large differences are seen between the RCP scenarios; in the far future, both heat stress and risk values are twice as large for RCP 8.5 compared to RCP 4.5. Depending on the GHG scenario and the LCZ type, heat stress is projected to increase by a factor of 10 by 2090 compared to the present-day climate and urban planning conditions. The imprint of vulnerability and exposure is clearly visible in the heat risk assessment, leading to very high levels of heat risk, most notably for the North Western part of the Brussels Capital Region. The results demonstrate the need for mitigation and adaptation plans at different policy levels that strive for lower GHG emissions and the development of sustainable urban areas safeguarding livability in cities.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.06.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Michał Preisner; Marzena Smol; Mika Horttanainen; Ivan Deviatkin; Jouni Havukainen; Maris Klavins; Ruta Ozola-Davidane; Jolita Kruopienė; Beata Szatkowska; Lise Appels; Sofie Houtmeyers; Kati Roosalu;pmid: 34923410
The European Union is currently in the process of transformation toward a circular economy model in which different areas of activity should be integrated for more efficient management of raw materials and waste. The wastewater sector has a great potential in this regard and therefore is an important element of the transformation process to the circular economy model. The targets of the circular economy policy framework such as resource recovery are tightly connected with the wastewater treatment processes and sewage sludge management. With this in view, the present study aims to review existing indicators on resource recovery that can enable efficient monitoring of the sustainable and circular solutions implemented in the wastewater sector. Within the reviewed indicators, most of them were focused on technological aspects of resource recovery processes such as nutrient removal efficiency, sewage sludge processing methods and environmental aspects as the pollutant share in the sewage sludge or its ashes. Moreover, other wide-scope indicators such as the wastewater service coverage or the production of bio-based fertilizers and hydrochar within the wastewater sector were analyzed. The results were used for the development of recommendations for improving the resources recovery monitoring framework in the wastewater sector and a proposal of a circularity indicator for a wastewater treatment plant highlighting new challenges for further researches and wastewater professionals.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2021.114261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Jo Dewulf; Steven De Meester; Sofie Huysman; Jonas De Schaepmeester; Kim Ragaert;Abstract A linear economy approach results in many environmental challenges: resources become depleted and end up as waste and emissions. One of the key strategies to overcome these problems is using waste as a resource, i.e. evolving toward a circular economy. To monitor this transition, suitable indicators are needed that focus on sustainability issues whilst taking into account the technical reality. In this paper, we develop such an indicator to quantify the circular economy performance of different plastic waste treatment options. This indicator is based on the technical quality of the plastic waste stream and evaluates resource consumption by using the Cumulative Exergy Extraction from the Natural Environment (CEENE) method. To illustrate the use of this new indicator, it was applied in a case study on post-industrial plastic waste treatment. The results show that the indicator can be a very useful approach to guide waste streams towards their optimal valorization option, based on quality of the waste flow and the environmental benefit of the different options.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 318 citations 318 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2017.01.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Oxford University Press (OUP) Stéphane, Pepin; Sarah, Radulovic; Rob, Wiegers; Jelena, Mrdakovic Popic; Antti, Kallio; Marie, Huss; Fidel, Grandia; Alba, Valls; Aina, Bruno;doi: 10.1093/rpd/ncad077
pmid: 37225184
AbstractIn large parts of Europe, the Chernobyl accident of 1986 caused fallout of Cs-137. This led to the uptake of Cs-137 in trees or other materials used for bioenergy production or as firewood for domestic purposes. This Cs-137 may concentrate in the ashes of the combustion process in such a way that the clearance level of 100 Bq per kg, defined in Directive 2013/59/Euratom (EU BSS), may consequently be exceeded. There is currently no clear consensus in Europe regarding the regulatory approach to this issue: should the import and use of Cs-137 contaminated biomass and its ashes be considered as a planned exposure situation or rather as an existing exposure situation? If considered as an existing exposure situation, which reference level should be applied? We compare the approaches in various European countries, such as Finland, Norway, Sweden, Belgium and the Netherlands. Results of a recent measurement campaign performed in Belgium on firewood imported from Belarus, Ukraine and other countries show a quite large range of Cs-137 activity concentration in firewood. Analysis of samples from biomass combustion confirms that the clearance level of 100 Bq per kg Cs-137 may be exceeded even when the activity concentration in the initial pellet is trivial. A review of dose-assessment studies performed by STUK and from the literature is presented. The general context of biomass energy production is sketched: for instance, in the Netherlands, 40 large biomass firing plants (capacity > 10 MW) are operational and some 20 more are already planned. The fly ashes from the biomass combustion may be a valuable resource for the construction industry, and the issue of Cs-137 contamination is connected with the requirements of the EU BSS regarding the natural radioactivity of building materials. Assessing the impact of Cs-137 contamination and clarifying regulations in the frame of a graded approach are important elements in this context.
Radiation Protection... arrow_drop_down Radiation Protection DosimetryArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/rpd/ncad077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Radiation Protection... arrow_drop_down Radiation Protection DosimetryArticle . 2023 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/rpd/ncad077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Wiley C. Bakker; Brian K. Sorrell; Peter M. van Bodegom; Rien Aerts; Annelies Oosthoek;In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more idiosyncratically, with different parameters responding to different treatments. These results show that partial submergence and soil flooding are two very different stressors to which species respond in different ways, and that their effects on physiology, survival, and growth are interactive. Understanding species zonation with water regimes can be improved by a better appreciation of how these factors affect plant metabolism independently and interactively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0390.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/07-0390.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Hossein Askari; Adam Ng; Adam Ng; Mustafa Disli;Given the devastating effects of global warming, the problem of human-induced climate change, and in particular carbon dioxide emissions, has been high on the global policy agenda. In this study, we examine the relationship between national culture, carbon dioxide emissions, and economic growth in the framework of the Environmental Kuznets Curve (EKC). Applying system GMM panel estimator across 69 developed and developing countries, we confirm the existence of EKC and show that culture significantly affects the income-emission relationship. Moreover, the effects of the six cultural dimensions on EKC can be collapsed into two: (i) masculinity, power distance and indulgence move the EKC upward and shift the income turning point to the left; and (ii) individualism, uncertainty, and long-term orientation move the EKC downward while shifting the income turning point to the right. The impact of culture on EKC remains also robust for alternative specifications. Future policy and global initiatives in sustainable development should incorporate the multidimensional impact of culture on national behavior towards environment and economic growth, a relationship that has been largely ignored in economic decision-making models.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.04.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 FrancePublisher:Elsevier BV Hussain Kazmi; Íngrid Munné-Collado; Fahad Mehmood; Tahir Abbas Syed; Johan Driesen;Abstract Energy communities will play a central role in the sustainable energy transition by helping inform and engage end users to become more responsible consumers of energy. However, the true potential of energy communities can only be unlocked at scale. This scalability requires data-driven solutions that model not just the behavior of building occupants but also of energy flexible resources in buildings, distributed generation and grid conditions in general. This understanding can then be utilized to improve the design and operation of energy communities in a variety of real-world settings. However, in practice, collecting and analyzing the data necessary to realize these objectives forms a large part of such projects, and is often seen as a prohibitive stumbling block. Furthermore, without a proper understanding of the local context, these projects are often at risk of failure due to misplaced expectations. However, this process can be considerably accelerated by utilizing open source datasets and models from related projects, which have been carried out in the past. Likewise, a number of open source, general-purpose tools exist that can help practitioners design and operate LECs in a near-optimal manner. These resources are important because they not only help ground expectations, they also provide LECs and other relevant stakeholders, including utilities and distribution system operators, with much-needed visibility on future energy and cash flows. This review provides a detailed overview of these open-source datasets, models and tools, and the many ways they can be utilized in optimally designing and operating real-world energy communities. It also highlights some of the most important limitations in currently available open source resources, and points to future research directions.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 61 citations 61 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 90download downloads 90 Powered bymore_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu