- home
- Advanced Search
Filters
Clear All- Energy Research
- BE
- Computers & Fluids
- Energy Research
- BE
- Computers & Fluids
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, NetherlandsPublisher:Elsevier BV Funded by:EC | NUMIWINGEC| NUMIWINGAuthors:P. Benard;
P. Benard
P. Benard in OpenAIREA. Viré;
V. Moureau;
G. Lartigue; +3 AuthorsV. Moureau
V. Moureau in OpenAIREP. Benard;
P. Benard
P. Benard in OpenAIREA. Viré;
V. Moureau;
G. Lartigue; L. Beaudet; P. Deglaire;V. Moureau
V. Moureau in OpenAIREL. Bricteux;
L. Bricteux
L. Bricteux in OpenAIREAccurate simulation of wind turbine wakes is critical for the optimization of turbine efficiency and prediction of fatigue loads. These wakes are three-dimensional, complex, unsteady and can evolve in geometrically complex environments. Modeling these flows calls thus for high-quality numerical methods that are able to capture and transport thin vortical structures on an unstructured grid. It is proposed here to assess the performances of a fourth-order finite-volume LES solver to perform massively parallel scale-resolving simulations of wind turbines wakes. In this framework, the actuator line method that takes the effect of the wind turbine blades on the flow into account is implemented. It is demonstrated that both near and far parts of the turbine wakes are accurately modeled as well as geometrical details. The methodology is assessed on two different test cases and validated with experimental results. It is demonstrated that the flow predictions are of equivalent quality on both structured and unstructured grids. The influence of the geometrical details (e.g. nacelle and tower) on the wake development as well as the influence of the discretization scheme are also investigated.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 82visibility views 82 download downloads 65 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Stefano Vagnoli; Tom Verstraete;Abstract In this paper unsteady RANS computations are used to study the inception of rotating stall in a transonic centrifugal compressor taking into account realistic installation effects on performance, as commonly found nowadays due to space limitations. To this end, the effect of an ideal uniform inlet conditions (normally found for long straight inlet) is compared with inlet distortions generated by a bent pipe installed just in front of the impeller. The numerical techniques that have to be applied to correctly represent the rotating stall are explained in detail: all simulations are done modeling the whole annulus of the radial machine, using high performance computing to represent the non-periodic phenomena leading to the stall inception. Moreover, stable boundary conditions are employed, with the aim to avoid the inception of large unphysical surge cycles. When an uniform inlet flow to the compressor is considered, the formation of 8 blockage cells rotating in the same direction of the compressor is pointed out. On the other hand, when the elbow is installed in front of the impeller, the distorted flow suppresses the formation of a rotating stall pattern.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2015.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2015.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: P Pierre Gousseau;van Taj Twan Hooff;
van Taj Twan Hooff; van Gjf Gert-Jan Heijst; +2 Authorsvan Taj Twan Hooff
van Taj Twan Hooff in OpenAIREP Pierre Gousseau;van Taj Twan Hooff;
van Taj Twan Hooff; van Gjf Gert-Jan Heijst;van Taj Twan Hooff
van Taj Twan Hooff in OpenAIREBje Bert Blocken;
Bje Bert Blocken;Bje Bert Blocken
Bje Bert Blocken in OpenAIREIn Computational Fluid Dynamics (CFD) studies for the prediction of room airflow the Reynolds-averaged Navier-Stokes (RANS) approach is often used, in which only the averaged quantities are computed, whereas the effect of turbulence is modeled. Since the RANS approach does not provide information on the velocity and concentration fluctuations, turbulent mass transport is often modeled using the standard gradient-diffusion hypothesis, which relates the turbulent mass flux to the mean concentration derivatives. This paper presents a CFD analysis of pollutant dispersion in an enclosure ventilated by a transitional wall jet (Re ˜ 2,500), using validated high-resolution RANS and Large Eddy Simulations (LES). The LES simulations show that a counter-gradient turbulent mass flux is present, indicating that the standard gradient-diffusion hypothesis used in RANS is not valid in the entire flow domain. However, it is shown that for this particular case, the convective mass fluxes dominate over the turbulent mass fluxes, and that the predicted pollutant concentrations by RANS will therefore not differ significantly from the results obtained with LES.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2014.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2014.02.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Abstract The effect of the cone tip-diameter on the flow field and performance of cyclone separator was investigated computationally and via mathematical models. Three cyclones with different cone tip diameters were studied using large eddy simulation (LES). The cyclone flow field pattern has been simulated and analyzed with the aid of velocity components and static pressure contour plots. In addition the cyclone collection efficiency based on one-way discrete phase modeling has been investigated. The results obtained demonstrate that LES is a suitable approach for modeling the effect of cyclone dimensions on the flow field and performance. The cone tip-diameter has an insignificant effect on the collection efficiency (the cut-off diameter) and the pressure drop. The simulation results agree well with the published experimental results and the mathematical models trend.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2011.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 180 citations 180 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2011.07.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu