- home
- Advanced Search
- Energy Research
- 7. Clean energy
- BE
- Computers & Fluids
- Energy Research
- 7. Clean energy
- BE
- Computers & Fluids
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, NetherlandsPublisher:Elsevier BV Funded by:EC | NUMIWINGEC| NUMIWINGP. Benard; A. Viré; V. Moureau; G. Lartigue; L. Beaudet; P. Deglaire; L. Bricteux;Accurate simulation of wind turbine wakes is critical for the optimization of turbine efficiency and prediction of fatigue loads. These wakes are three-dimensional, complex, unsteady and can evolve in geometrically complex environments. Modeling these flows calls thus for high-quality numerical methods that are able to capture and transport thin vortical structures on an unstructured grid. It is proposed here to assess the performances of a fourth-order finite-volume LES solver to perform massively parallel scale-resolving simulations of wind turbines wakes. In this framework, the actuator line method that takes the effect of the wind turbine blades on the flow into account is implemented. It is demonstrated that both near and far parts of the turbine wakes are accurately modeled as well as geometrical details. The methodology is assessed on two different test cases and validated with experimental results. It is demonstrated that the flow predictions are of equivalent quality on both structured and unstructured grids. The influence of the geometrical details (e.g. nacelle and tower) on the wake development as well as the influence of the discretization scheme are also investigated.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, NetherlandsPublisher:Elsevier BV Funded by:EC | NUMIWINGEC| NUMIWINGP. Benard; A. Viré; V. Moureau; G. Lartigue; L. Beaudet; P. Deglaire; L. Bricteux;Accurate simulation of wind turbine wakes is critical for the optimization of turbine efficiency and prediction of fatigue loads. These wakes are three-dimensional, complex, unsteady and can evolve in geometrically complex environments. Modeling these flows calls thus for high-quality numerical methods that are able to capture and transport thin vortical structures on an unstructured grid. It is proposed here to assess the performances of a fourth-order finite-volume LES solver to perform massively parallel scale-resolving simulations of wind turbines wakes. In this framework, the actuator line method that takes the effect of the wind turbine blades on the flow into account is implemented. It is demonstrated that both near and far parts of the turbine wakes are accurately modeled as well as geometrical details. The methodology is assessed on two different test cases and validated with experimental results. It is demonstrated that the flow predictions are of equivalent quality on both structured and unstructured grids. The influence of the geometrical details (e.g. nacelle and tower) on the wake development as well as the influence of the discretization scheme are also investigated.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 France, NetherlandsPublisher:Elsevier BV Funded by:EC | NUMIWINGEC| NUMIWINGP. Benard; A. Viré; V. Moureau; G. Lartigue; L. Beaudet; P. Deglaire; L. Bricteux;Accurate simulation of wind turbine wakes is critical for the optimization of turbine efficiency and prediction of fatigue loads. These wakes are three-dimensional, complex, unsteady and can evolve in geometrically complex environments. Modeling these flows calls thus for high-quality numerical methods that are able to capture and transport thin vortical structures on an unstructured grid. It is proposed here to assess the performances of a fourth-order finite-volume LES solver to perform massively parallel scale-resolving simulations of wind turbines wakes. In this framework, the actuator line method that takes the effect of the wind turbine blades on the flow into account is implemented. It is demonstrated that both near and far parts of the turbine wakes are accurately modeled as well as geometrical details. The methodology is assessed on two different test cases and validated with experimental results. It is demonstrated that the flow predictions are of equivalent quality on both structured and unstructured grids. The influence of the geometrical details (e.g. nacelle and tower) on the wake development as well as the influence of the discretization scheme are also investigated.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 France, NetherlandsPublisher:Elsevier BV Funded by:EC | NUMIWINGEC| NUMIWINGP. Benard; A. Viré; V. Moureau; G. Lartigue; L. Beaudet; P. Deglaire; L. Bricteux;Accurate simulation of wind turbine wakes is critical for the optimization of turbine efficiency and prediction of fatigue loads. These wakes are three-dimensional, complex, unsteady and can evolve in geometrically complex environments. Modeling these flows calls thus for high-quality numerical methods that are able to capture and transport thin vortical structures on an unstructured grid. It is proposed here to assess the performances of a fourth-order finite-volume LES solver to perform massively parallel scale-resolving simulations of wind turbines wakes. In this framework, the actuator line method that takes the effect of the wind turbine blades on the flow into account is implemented. It is demonstrated that both near and far parts of the turbine wakes are accurately modeled as well as geometrical details. The methodology is assessed on two different test cases and validated with experimental results. It is demonstrated that the flow predictions are of equivalent quality on both structured and unstructured grids. The influence of the geometrical details (e.g. nacelle and tower) on the wake development as well as the influence of the discretization scheme are also investigated.
Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 9 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02107334Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.compfluid.2018.03.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu