- home
- Advanced Search
- Energy Research
- 6. Clean water
- US
- AU
- FI
- BG
- Sustainability
- Energy Research
- 6. Clean water
- US
- AU
- FI
- BG
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:MDPI AG S. Nithyapriya; Sundaram Lalitha; R. Z. Sayyed; M. S. Reddy; Daniel Joe Dailin; Hesham A. El Enshasy; Ni Luh Suriani; Susila Herlambang;doi: 10.3390/su13105394
Siderophores are low molecular weight secondary metabolites produced by microorganisms under low iron stress as a specific iron chelator. In the present study, a rhizospheric bacterium was isolated from the rhizosphere of sesame plants from Salem district, Tamil Nadu, India and later identified as Bacillus subtilis LSBS2. It exhibited multiple plant-growth-promoting (PGP) traits such as hydrogen cyanide (HCN), ammonia, and indole acetic acid (IAA), and solubilized phosphate. The chrome azurol sulphonate (CAS) agar plate assay was used to screen the siderophore production of LSBS2 and quantitatively the isolate produced 296 mg/L of siderophores in succinic acid medium. Further characterization of the siderophore revealed that the isolate produced catecholate siderophore bacillibactin. A pot culture experiment was used to explore the effect of LSBS2 and its siderophore in promoting iron absorption and plant growth of Sesamum indicum L. Data from the present study revealed that the multifarious Bacillus sp. LSBS2 could be exploited as a potential bioinoculant for growth and yield improvement in S. indicum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 SwitzerlandPublisher:MDPI AG Authors: Thomas Bolognesi; Andrea K. Gerlak; Gregory Giuliani;The Social-Ecological Systems (SES) framework serves as a valuable framework to explore and understand social and ecological interactions, and pathways in water governance. Yet, it lacks a robust understanding of change. We argue an analytical and methodological approach to engaging global changes in SES is critical to strengthening the scope and relevance of the SES framework. Relying on SES and resilience thinking, we propose an institutional and cognitive model of change that institutions and natural resources systems co-evolve to provide a dynamic understanding of SES that stands on three causal mechanisms: institutional complexity trap, rigidity trap, and learning processes. We illustrate how Data Cube technology could overcome current limitations and offer reliable avenues to test hypothesis about the dynamics of social-ecological systems and water security by offering to combine spatial and time data with no major technical requirements for users.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201810.0724.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201810.0724.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:MDPI AG Authors: Arif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; +2 AuthorsArif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; Bhaskar C. S. Chittoori; Abdullah Almajed;doi: 10.3390/su12177019
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthShu-Di Fan; Yue-Ming Hu; Lu Wang; Zhen-Hua Liu; Zhou Shi; Wen-Bin Wu; Yu-Chun Pan; Guang-Xing Wang; A-Xing Zhu; Bo Li;doi: 10.3390/su10103459
To increase the spatial resolution of Soil Moisture Active Passive (SMAP), this study modifies the downscaling factor model based on the Temperature Vegetation Drought Index (TVDI) using data from the Project for On-Board Autonomy (PROBA-V). In the modified model, TVDI parameters were derived from the temperature-vegetation space and the Enhanced Vegetation Index (EVI). This study was conducted in the north China region using SMAP, PROBA-V, and Moderate Resolution Imaging Spectroradiometer satellite images. The 9-km spatial resolution SMAP data was downscaled to 0.3-km spatial resolution soil moisture using a modified downscaling method. Downscaling accuracies from the original and modified downscaling factor models were compared based on field observations. The results show that both methods generated similar spatial distributions in which soil moisture estimates increased as vegetation coverage increased from built-up areas to forest. However, based on the root mean square error between observations and estimations, the modified model demonstrated an increased estimation accuracy of 4.2% for soil moisture compared to the original method. This study also implies that downscaled soil moisture shows promise as a data source for subsequent watershed scale studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:MDPI AG Qiang Tang; Chansheng He; Xiubin He; Yuhai Bao; Ronghua Zhong; Anbang Wen;doi: 10.3390/su6084795
The Upper Yangtze River Basin comprises a densely-populated agricultural region with mountainous and hilly landforms. Intensive cultivation has been extended onto steep hillslopes, which constitute the principal source area for sediment production. Soil conservation on sloping arable lands is thus of utmost priority for persisting sustainable agricultural production and maintaining sound ecosystem services. Although there have been many soil conservation techniques, either promoted by the government or adopted by local farmers, the practiced area was very limited relative to the total area affected by soil erosion. This paper attempts to introduce four popular soil conservation measures on sloping arable lands in this region to enhance a broader scale of implementation, including hedgerow buffers, level trenches, sloping terraces and limited downslope tillage. These practices, although developed from local farmers’ indigenous knowledge for productive purposes, have well conformed to our contemporary understanding of soil erosion processes on sloping landscape affected by human disturbances, were of sound suitability to regional manual tillage agriculture and more trade-off-efficient on rill prevention, runoff harvest and nutrient management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6084795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6084795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:MDPI AG Authors: Xiaofang Han; Hong Shen; Hongqing Hu; Jerry Gao;doi: 10.3390/su14148811
There are many models presented that assess water quality. However, the applications of the models are limited due to the difficulty of preparing input data and interpreting model output. In this paper, we developed a Web-based platform to assist researchers in analyzing water quality. The data from sensors can be automatically imported to the platform according to the configured information of data structures. The platform also provides conventional methods and big data methods for the users to analyze water quality. Moreover, the users can choose the water quality parameters according to the water usage. The presented platform can show the model output in a text format and a graphic format, which allows for the analysis to be better understood by the user. The platform integrates the input, analysis, and output together well and brings great convenience to the research on water quality.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14148811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14148811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Roua Amami; Khaled Ibrahimi; Farooq Sher; Paul Milham; Hiba Ghazouani; Sayed Chehaibi; Zahra Hussain; Hafiz M. N. Iqbal;doi: 10.3390/su13063155
Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R2), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Qiong Su; Raghupathy Karthikeyan;doi: 10.3390/su15129290
Climate change, socioeconomic development, and irrigation management are exacerbating water scarcity in many regions worldwide. However, current global-scale modeling approaches used to evaluate the impact of these factors on water resources are limited by coarse resolution and simplified representation of local socioeconomic and agricultural systems, which hinders their use for regional decision making. Here, we upgraded the irrigation water use simulation in the system dynamics and water environmental model (SyDWEM) and integrated it with the water supply stress index (WaSSI) ecosystem services model. This integrated model (SyDWEM-WaSSI) simulated local socioeconomic and agricultural systems to accurately assess future water stress associated with climate change, socioeconomic development, and agricultural management at subbasin levels. We calibrated the integrated model and applied it to assess future water stress levels in Texas from 2015 to 2050. The water stress index (WSI), defined as the ratio of water withdrawal to availability, was used to indicate different water stress levels. Our results showed that the integrated model captured changes in water demand across various sectors and the impact of climate change on water supply. Projected high water stress areas (WSI > 0.4) are expected to increase significantly by 2050, particularly in the Texas High Plains and Rolling Plains regions, where irrigation water use was projected to rise due to the impact of climate change. Metropolitan areas, including Dallas, Houston, Austin, and San Antonio, were also expected to experience increased domestic water demand, further exacerbating water stress in these areas. Our study highlights the need to incorporate socioeconomic planning into water resources management. The integrated model is a valuable tool for decisionmakers and stakeholders to evaluate the impacts of climate change, socioeconomic development, and irrigation management on water resources at the local scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:MDPI AG Authors: Huang, Qidong; Xu, Jiajun; Wei, Yongping;doi: 10.3390/su10010150
Societal relations in rural areas have entered into a new stage of adjustment over the past decade. However, the adjustment, which might bring about profound societal changes in countryside as well as in China as a whole, have not been paid much attention and very few studies have been conducted from the perspective of ecological resource crises. We use the case of a village as an example to show how water pollution, as one of the contributory factors, possibly affect the transition of clans and societal changes in Chinese villages. Through observation and interviews, we find that there is an apparent rise of “New Clanism” within clans, which gradually abandons the tradition of supremacy of clan interests and places family or individual interests at top priority. We also find that clan boundaries get increasingly obscure since the integrity of clans is undermined by the rise of new interest groups across clans, but the boundaries remain relatively clear due to the consistency (albeit incomplete) of clan interests. Some new clan élites and representatives of new interest groups get involved in village governance, which indicates that their goals have shifted from natural resources to social or political capital. The significance of our findings is that they provide not only a unique perspective for the interaction between society and resources, but also some new ideas for the future study of rural China at the environment-social interface.
Sustainability arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Salar Rezapour; Amin Nouri; Hawzhin M. Jalil; Shawn A. Hawkins; Scott B. Lukas;doi: 10.3390/su13041952
Dwindling water resources have drawn global attention to the reuse of treated wastewater (TWW) for irrigation. However, the impact of continuous TWW applications on soil quality and the proper quantification and monitoring frameworks have not been well-understood. This study aims to provides an insight into the impact of flood irrigation of urban TWW on soil nutritional-chemical attributes and the potential application of multiple soil quality indices for a corn cropping system. To achieve that goal, we pursued the Total Data Set (TDS) and Minimum Data Set (MDS) approaches, as well as the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI) models. A total of 17 soil nutritional-chemical indicators (0–50 cm depths) were determined for the soils irrigated with TWW (five sites) and well water (one site as control) in West Azerbaijan province in northwestern Iran. Results revealed a significant difference in the majority of soil nutritional-chemical attributes, IQI-TDS, NQI-TDS, IQI-MDS, NQI-MDS, and corn yield between the TWW-irrigated and well-irrigated soils. Irrigation with TWW resulted in a significant increase in the amount of organic matter and cation exchange capacity by 9–17% and 17–26%, respectively, macronutrients (N, P, K, Ca, and Mg) by 22–164%, and the majority of trace metals (Fe, Mn, Zn, and Cu) by 17–175%, suggesting an improvement in soil nutrients and an increase in productivity. Comparing to the soil in control sites, the TWW irrigation caused a notable increase in the values of IQI-TDS, NQI-TDS, IQI-MDS, and NQI-MDS models ranging 14.6–29.5%, 19.1–25.5%, 21.7–33.3%, and 18.4–23.7%, respectively. This implies that soil quality was ameliorated to a significant extent with TWW irrigation. These improvements resulted in a remarkable increase in corn yield ranging from 12.5% to 28.1%. The regression equations revealed that up to 78%, 47%, 72%, and 36% of the variance in the IQI-TDS, NQI-TDS, IQI-MDS, and NQI-MDS models, respectively, could be captured by corn yield. The results of the regression and correlation analyses showed that the IQI-MDS model was more accurate than the other models in assessing soil quality and predicting crop yield. These findings may be an effective and practical tool for policy making, implementation, and management of soil irrigated with TWW.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 MalaysiaPublisher:MDPI AG S. Nithyapriya; Sundaram Lalitha; R. Z. Sayyed; M. S. Reddy; Daniel Joe Dailin; Hesham A. El Enshasy; Ni Luh Suriani; Susila Herlambang;doi: 10.3390/su13105394
Siderophores are low molecular weight secondary metabolites produced by microorganisms under low iron stress as a specific iron chelator. In the present study, a rhizospheric bacterium was isolated from the rhizosphere of sesame plants from Salem district, Tamil Nadu, India and later identified as Bacillus subtilis LSBS2. It exhibited multiple plant-growth-promoting (PGP) traits such as hydrogen cyanide (HCN), ammonia, and indole acetic acid (IAA), and solubilized phosphate. The chrome azurol sulphonate (CAS) agar plate assay was used to screen the siderophore production of LSBS2 and quantitatively the isolate produced 296 mg/L of siderophores in succinic acid medium. Further characterization of the siderophore revealed that the isolate produced catecholate siderophore bacillibactin. A pot culture experiment was used to explore the effect of LSBS2 and its siderophore in promoting iron absorption and plant growth of Sesamum indicum L. Data from the present study revealed that the multifarious Bacillus sp. LSBS2 could be exploited as a potential bioinoculant for growth and yield improvement in S. indicum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13105394&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2018 SwitzerlandPublisher:MDPI AG Authors: Thomas Bolognesi; Andrea K. Gerlak; Gregory Giuliani;The Social-Ecological Systems (SES) framework serves as a valuable framework to explore and understand social and ecological interactions, and pathways in water governance. Yet, it lacks a robust understanding of change. We argue an analytical and methodological approach to engaging global changes in SES is critical to strengthening the scope and relevance of the SES framework. Relying on SES and resilience thinking, we propose an institutional and cognitive model of change that institutions and natural resources systems co-evolve to provide a dynamic understanding of SES that stands on three causal mechanisms: institutional complexity trap, rigidity trap, and learning processes. We illustrate how Data Cube technology could overcome current limitations and offer reliable avenues to test hypothesis about the dynamics of social-ecological systems and water security by offering to combine spatial and time data with no major technical requirements for users.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201810.0724.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.20944/prepr...Article . 2018 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints201810.0724.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:MDPI AG Authors: Arif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; +2 AuthorsArif Ali Baig Moghal; Mohammed Abdul Lateef; Syed Abu Sayeed Mohammed; Kehinde Lemboye; Bhaskar C. S. Chittoori; Abdullah Almajed;doi: 10.3390/su12177019
This study evaluated the efficacy of enzyme induced calcite precipitation (EICP) in restricting the mobility of heavy metals in soils. EICP is an environmentally friendly method that has wide ranging applications in the sustainable development of civil infrastructure. The study examined the desorption of three heavy metals from treated and untreated soils using ethylene diamine tetra-acetic acid (EDTA) and citric acid (C6H8O7) extractants under harsh conditions. Two natural soils spiked with cadmium (Cd), nickel (Ni), and lead (Pb) were studied in this research. The soils were treated with three types of enzyme solutions (ESs) to achieve EICP. A combination of urea of one molarity (M), 0.67 M calcium chloride, and urease enzyme (3 g/L) was mixed in deionized (DI) water to prepare enzyme solution 1 (ES1); non-fat milk powder (4 g/L) was added to ES1 to prepare enzyme solution 2 (ES2); and 0.37 M urea, 0.25 M calcium chloride, 0.85 g/L urease enzyme, and 4 g/L non-fat milk powder were mixed in DI water to prepare enzyme solution 3 (ES3). Ni, Cd, and Pb were added with load ratios of 50 and 100 mg/kg to both untreated and treated soils to study the effect of EICP on desorption rates of the heavy metals from soil. Desorption studies were performed after a curing period of 40 days. The curing period started after the soil samples were spiked with heavy metals. Soils treated with ESs were spiked with heavy metals after a curing period of 21 days and then further cured for 40 days. The amount of CaCO3 precipitated in the soil by the ESs was quantified using a gravimetric acid digestion test, which related the desorption of heavy metals to the amount of precipitated CaCO3. The order of desorption was as follows: Cd > Ni > Pb. It was observed that the average maximum removal efficiency of the untreated soil samples (irrespective of the load ratio and contaminants) was approximately 48% when extracted by EDTA and 46% when extracted by citric acid. The soil samples treated with ES2 exhibited average maximum removal efficiencies of 19% and 10% when extracted by EDTA and citric acid, respectively. It was observed that ES2 precipitated a maximum amount of calcium carbonate (CaCO3) when compared to ES1 and ES3 and retained the maximum amount of heavy metals in the soil by forming a CaCO3 shield on the heavy metals, thus decreasing their mobility. An approximate improvement of 30% in the retention of heavy metal ions was observed in soils treated with ESs when compared to untreated soil samples. Therefore, the study suggests that ESs can be an effective alternative in the remediation of soils contaminated with heavy metal ions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthShu-Di Fan; Yue-Ming Hu; Lu Wang; Zhen-Hua Liu; Zhou Shi; Wen-Bin Wu; Yu-Chun Pan; Guang-Xing Wang; A-Xing Zhu; Bo Li;doi: 10.3390/su10103459
To increase the spatial resolution of Soil Moisture Active Passive (SMAP), this study modifies the downscaling factor model based on the Temperature Vegetation Drought Index (TVDI) using data from the Project for On-Board Autonomy (PROBA-V). In the modified model, TVDI parameters were derived from the temperature-vegetation space and the Enhanced Vegetation Index (EVI). This study was conducted in the north China region using SMAP, PROBA-V, and Moderate Resolution Imaging Spectroradiometer satellite images. The 9-km spatial resolution SMAP data was downscaled to 0.3-km spatial resolution soil moisture using a modified downscaling method. Downscaling accuracies from the original and modified downscaling factor models were compared based on field observations. The results show that both methods generated similar spatial distributions in which soil moisture estimates increased as vegetation coverage increased from built-up areas to forest. However, based on the root mean square error between observations and estimations, the modified model demonstrated an increased estimation accuracy of 4.2% for soil moisture compared to the original method. This study also implies that downscaled soil moisture shows promise as a data source for subsequent watershed scale studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:MDPI AG Qiang Tang; Chansheng He; Xiubin He; Yuhai Bao; Ronghua Zhong; Anbang Wen;doi: 10.3390/su6084795
The Upper Yangtze River Basin comprises a densely-populated agricultural region with mountainous and hilly landforms. Intensive cultivation has been extended onto steep hillslopes, which constitute the principal source area for sediment production. Soil conservation on sloping arable lands is thus of utmost priority for persisting sustainable agricultural production and maintaining sound ecosystem services. Although there have been many soil conservation techniques, either promoted by the government or adopted by local farmers, the practiced area was very limited relative to the total area affected by soil erosion. This paper attempts to introduce four popular soil conservation measures on sloping arable lands in this region to enhance a broader scale of implementation, including hedgerow buffers, level trenches, sloping terraces and limited downslope tillage. These practices, although developed from local farmers’ indigenous knowledge for productive purposes, have well conformed to our contemporary understanding of soil erosion processes on sloping landscape affected by human disturbances, were of sound suitability to regional manual tillage agriculture and more trade-off-efficient on rill prevention, runoff harvest and nutrient management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6084795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6084795&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:MDPI AG Authors: Xiaofang Han; Hong Shen; Hongqing Hu; Jerry Gao;doi: 10.3390/su14148811
There are many models presented that assess water quality. However, the applications of the models are limited due to the difficulty of preparing input data and interpreting model output. In this paper, we developed a Web-based platform to assist researchers in analyzing water quality. The data from sensors can be automatically imported to the platform according to the configured information of data structures. The platform also provides conventional methods and big data methods for the users to analyze water quality. Moreover, the users can choose the water quality parameters according to the water usage. The presented platform can show the model output in a text format and a graphic format, which allows for the analysis to be better understood by the user. The platform integrates the input, analysis, and output together well and brings great convenience to the research on water quality.
San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14148811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert San José State Unive... arrow_drop_down San José State University ScholarWorksArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14148811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Roua Amami; Khaled Ibrahimi; Farooq Sher; Paul Milham; Hiba Ghazouani; Sayed Chehaibi; Zahra Hussain; Hafiz M. N. Iqbal;doi: 10.3390/su13063155
Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R2), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Qiong Su; Raghupathy Karthikeyan;doi: 10.3390/su15129290
Climate change, socioeconomic development, and irrigation management are exacerbating water scarcity in many regions worldwide. However, current global-scale modeling approaches used to evaluate the impact of these factors on water resources are limited by coarse resolution and simplified representation of local socioeconomic and agricultural systems, which hinders their use for regional decision making. Here, we upgraded the irrigation water use simulation in the system dynamics and water environmental model (SyDWEM) and integrated it with the water supply stress index (WaSSI) ecosystem services model. This integrated model (SyDWEM-WaSSI) simulated local socioeconomic and agricultural systems to accurately assess future water stress associated with climate change, socioeconomic development, and agricultural management at subbasin levels. We calibrated the integrated model and applied it to assess future water stress levels in Texas from 2015 to 2050. The water stress index (WSI), defined as the ratio of water withdrawal to availability, was used to indicate different water stress levels. Our results showed that the integrated model captured changes in water demand across various sectors and the impact of climate change on water supply. Projected high water stress areas (WSI > 0.4) are expected to increase significantly by 2050, particularly in the Texas High Plains and Rolling Plains regions, where irrigation water use was projected to rise due to the impact of climate change. Metropolitan areas, including Dallas, Houston, Austin, and San Antonio, were also expected to experience increased domestic water demand, further exacerbating water stress in these areas. Our study highlights the need to incorporate socioeconomic planning into water resources management. The integrated model is a valuable tool for decisionmakers and stakeholders to evaluate the impacts of climate change, socioeconomic development, and irrigation management on water resources at the local scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15129290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 AustraliaPublisher:MDPI AG Authors: Huang, Qidong; Xu, Jiajun; Wei, Yongping;doi: 10.3390/su10010150
Societal relations in rural areas have entered into a new stage of adjustment over the past decade. However, the adjustment, which might bring about profound societal changes in countryside as well as in China as a whole, have not been paid much attention and very few studies have been conducted from the perspective of ecological resource crises. We use the case of a village as an example to show how water pollution, as one of the contributory factors, possibly affect the transition of clans and societal changes in Chinese villages. Through observation and interviews, we find that there is an apparent rise of “New Clanism” within clans, which gradually abandons the tradition of supremacy of clan interests and places family or individual interests at top priority. We also find that clan boundaries get increasingly obscure since the integrity of clans is undermined by the rise of new interest groups across clans, but the boundaries remain relatively clear due to the consistency (albeit incomplete) of clan interests. Some new clan élites and representatives of new interest groups get involved in village governance, which indicates that their goals have shifted from natural resources to social or political capital. The significance of our findings is that they provide not only a unique perspective for the interaction between society and resources, but also some new ideas for the future study of rural China at the environment-social interface.
Sustainability arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010150&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Salar Rezapour; Amin Nouri; Hawzhin M. Jalil; Shawn A. Hawkins; Scott B. Lukas;doi: 10.3390/su13041952
Dwindling water resources have drawn global attention to the reuse of treated wastewater (TWW) for irrigation. However, the impact of continuous TWW applications on soil quality and the proper quantification and monitoring frameworks have not been well-understood. This study aims to provides an insight into the impact of flood irrigation of urban TWW on soil nutritional-chemical attributes and the potential application of multiple soil quality indices for a corn cropping system. To achieve that goal, we pursued the Total Data Set (TDS) and Minimum Data Set (MDS) approaches, as well as the Integrated Quality Index (IQI) and Nemoro Quality Index (NQI) models. A total of 17 soil nutritional-chemical indicators (0–50 cm depths) were determined for the soils irrigated with TWW (five sites) and well water (one site as control) in West Azerbaijan province in northwestern Iran. Results revealed a significant difference in the majority of soil nutritional-chemical attributes, IQI-TDS, NQI-TDS, IQI-MDS, NQI-MDS, and corn yield between the TWW-irrigated and well-irrigated soils. Irrigation with TWW resulted in a significant increase in the amount of organic matter and cation exchange capacity by 9–17% and 17–26%, respectively, macronutrients (N, P, K, Ca, and Mg) by 22–164%, and the majority of trace metals (Fe, Mn, Zn, and Cu) by 17–175%, suggesting an improvement in soil nutrients and an increase in productivity. Comparing to the soil in control sites, the TWW irrigation caused a notable increase in the values of IQI-TDS, NQI-TDS, IQI-MDS, and NQI-MDS models ranging 14.6–29.5%, 19.1–25.5%, 21.7–33.3%, and 18.4–23.7%, respectively. This implies that soil quality was ameliorated to a significant extent with TWW irrigation. These improvements resulted in a remarkable increase in corn yield ranging from 12.5% to 28.1%. The regression equations revealed that up to 78%, 47%, 72%, and 36% of the variance in the IQI-TDS, NQI-TDS, IQI-MDS, and NQI-MDS models, respectively, could be captured by corn yield. The results of the regression and correlation analyses showed that the IQI-MDS model was more accurate than the other models in assessing soil quality and predicting crop yield. These findings may be an effective and practical tool for policy making, implementation, and management of soil irrigated with TWW.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu