- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 8. Economic growth
- CA
- BG
- Energy Policy
- Energy Research
- 11. Sustainability
- 8. Economic growth
- CA
- BG
- Energy Policy
description Publicationkeyboard_double_arrow_right Article , Journal 2010 CanadaPublisher:Elsevier BV Funded by:NSERCNSERCAs the Ontario government has recognized that solar photovoltaic (PV) energy conversion is a solution to satisfying society's energy demands while reducing the adverse anthropogenic impacts on the global environment that compromise social welfare, they have begun to generate policy and funding programs to support financial incentives for PV. This paper provides a financial analysis for investment in a 1 GW per year turnkey amorphous silicon PV manufacturing plant. The financial benefits for both the provincial and federal governments were quantified for: i) full construction subsidy, ii) construction subsidy and sale, iii) partially subsidize construction, iv) a publicly owned plant, v) loan guarantee for construction, and vi) an income tax holiday. Revenues for the governments are derived from: taxation (personal, corporate, and sales), sales of panels in Ontario, and saved health, environmental and economic costs associated with offsetting coal-fired electricity. Both governments enjoyed positive cash flows from these investments in less than 12 years and in many of the scenarios both governments earned well over 8% on investments from 100s of millions to $2.4 billion. The results showed that it is in the financial best interest of both the Ontario and Canadian federal governments to implement aggressive fiscal policy to support large-scale PV manufacturing.
Hyper Article en Lig... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.03.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down The University of Western Ontario: Scholarship@WesternArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.03.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:Denise L. Mauzerall;
Daniel Z. Ma; Michael A. Celia; Mary Kang;Denise L. Mauzerall
Denise L. Mauzerall in OpenAIREAbstract Well plugging, the main strategy for reducing methane emissions from millions of unplugged abandoned oil and gas (AOG) wells in the U.S. and abroad, is expensive and many wells remain unplugged. In addition, plugging does not necessarily reduce methane emissions and some categories of plugged wells are high emitters. We analyze strategies and costs of five options for reducing methane emissions from high-emitting AOG wells - those which are unplugged and plugged/vented gas wells. The five options are: plugging without gas venting, plugging with gas venting and flaring, plugging with gas venting and usage, gas flaring only, and gas capture/usage only. Average plugging costs ($37,000 per well) can be justified by the social cost of methane, which considers air quality, climate, and human/ecosystem impacts. Savings as measured by natural gas prices and alternative energy credits can offset low plugging costs (
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.05.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2019.05.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Gengaiah Uma;Kalim U. Shah;
Chandan Sapkota; Bibek R. Kandel; +1 AuthorsKalim U. Shah
Kalim U. Shah in OpenAIREGengaiah Uma;Kalim U. Shah;
Chandan Sapkota; Bibek R. Kandel; Hari Bansha Dulal;Kalim U. Shah
Kalim U. Shah in OpenAIREThe dramatically increasing population of Asia necessitates equally as dramatic increase in energy supply to meet demand. Rapidly increasing energy demand is a major concern for Asian countries because the increase in demand is being met through the increased use of fossil fuel supply, largely domestic coal and imported fuel. Renewable energy supply presents a lower emission pathway that could be a viable option for steering off the higher emissions path. However, several market, economic, institutional, technical, and socio-cultural barriers hinder countries in moving from high to low emission pathway. Following a discussion on the rising demand for energy in Asia and the prospects of partly satisfying it with renewable energy, we outline the reasons for government support to tackle the barriers for widespread diffusion of grid-based renewable energy. Additionally, we also discuss workable models for strategic government intervention to support diffusion of grid-based renewable energy in Asia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu84 citations 84 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.03.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Elsevier BV Timo Karjalainen; Leif Gustavsson; Gregg Marland; Bernard Schlamadinger; Ilkka Savolainen; Michael J. Apps;Implementation of some of the articles of the Kyoto Protocol will require rules for accounting and for defining baselines against which reduction of greenhouse-gas emissions, or enhancement of greenhouse-gas removals, are to be measured. Project accounting needs to provide incentives to ensure that the objective of the United Nations Framework Convention on Climate Change (UNFCCC) is served and that the interests of all participating parties are respected. To establish the emission reduction achievements of activities is complex as it is inherently very difficult to define the counterfatctuel baseline. Here, we articulate four basic principles — accuracy, comprehensiveness, conservativeness and practicability — that can be used to guide the construction of baselines for greenhouse-gas mitigation projects. The overall aim is to have accurate, comprehensive, and conservative baselines; but this aim needs to be balanced to yield baselines that are as simple as possible, can be practically implemented, and provide incentives to fulfill the ultimate objective of the UNFCCC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(00)00079-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0301-4215(00)00079-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Publisher:Elsevier BV Junfang Tian; Geng Li; Shoufeng Ma; Ning Jia; Xue Liu;With the accelerating process of urbanization, developing countries are facing growing pressure to pursue energy savings and emission reductions, especially in urban passenger transport. In this paper, we built a Beijing urban passenger transport carbon model, including an economy subsystem, population subsystem, transport subsystem, and energy consumption and CO2 emissions subsystem using System Dynamics. Furthermore, we constructed a variety of policy scenarios based on management experience in Beijing. The analysis showed that priority to the development of public transport (PDPT) could significantly increase the proportion of public transport locally and would be helpful in pursuing energy savings and emission reductions as well. Travel demand management (TDM) had a distinctive effect on energy savings and emission reductions in the short term, while technical progress (TP) was more conducive to realizing emission reduction targets. Administrative rules and regulations management (ARM) had the best overall effect of the individual policies on both energy savings and emission reductions. However, the effect of comprehensive policy (CP) was better than any of the individual policies pursued separately. Furthermore, the optimal implementation sequence of each individual policy in CP was TP→PDPT→TDM→ARM.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5–1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency—especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand e. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO2 emissions far higher than standard business as usual projections utilizing AEEI assumptions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2005.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2005.05.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Bruno S. Silvestre; Bruno S. Silvestre;Stelvia Matos;
Stelvia Matos
Stelvia Matos in OpenAIREJeremy Hall;
+1 AuthorsJeremy Hall
Jeremy Hall in OpenAIREBruno S. Silvestre; Bruno S. Silvestre;Stelvia Matos;
Stelvia Matos
Stelvia Matos in OpenAIREJeremy Hall;
Luiz Augusto Pereira de Andrade Figueira;Jeremy Hall
Jeremy Hall in OpenAIREThis paper analyzes the evolution of five electricity distribution companies in the Northeast of Brazil using technical and financial indicators. Three privatized and two public firms were analyzed between 1997 and 2008. The financial indicators are used as proxies for the capacity of the business to generate value for shareholders, while the technical indicators are used as proxies for service quality provided to consumers. We observed that the privatized firms had their financial indicators improved after privatization, increasing the value of the firm for the shareholders. However, there is no evidence that privatization affected the quality of service provided to consumers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.07.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.07.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Funded by:NSERCNSERCAuthors:Sylvia Sleep;
Heather L. MacLean; Joule A. Bergerson; Jennifer M. McKellar;Sylvia Sleep
Sylvia Sleep in OpenAIREAbstract The greenhouse gas (GHG) emissions intensity of oil sands operations has declined over time but has not offset absolute emissions growth due to rapidly increasing production. Policy making, decisions about research and development, and stakeholder discourse should be informed by an assessment of future emissions intensity trends, however informed projections are not easily generated. This study investigates expected trends in oil sands GHG emissions using expert elicitation. Thirteen experts participated in a survey, providing quantitative estimates of expected GHG emissions intensity changes and qualitative identifications of drivers. Experts generally agree that emissions intensity reductions are expected at commercially operating projects by 2033, with the greatest reductions expected through the use of technology in the in situ area of oil sands activity (40% mean reduction at multiple projects, averaged across experts). Incremental process changes are expected to contribute less to reducing GHG emissions intensity, however their potentially lower risk and cost may result in larger cumulative reductions. Both technology availability and more stringent GHG mitigation policies are required to realize these emissions intensity reductions. This paper demonstrates a method to increase rigour in emissions forecasting activities and the results can inform policy making, research and development and modelling and forecasting studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2016.10.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Maxwell Sykes; Jonn Axsen;Abstract The adoption of zero emission vehicles (ZEVs) is limited by a variety of barriers. Some are region-specific (e.g. availability of charging infrastructure) while others are global in nature (e.g. battery prices) where improvements spill over between regions. This study explores regional spillover effects and GHG impacts of strong ZEV-focused policy, specifically the ZEV mandate in place in ten U.S. states (“ZEV States”) which requires automakers to sell a minimum amount of ZEVs each year. We use a dynamic technology adoption model to simulate passenger vehicle sectors in North America, focusing on the case of one small region (British Columbia, covering 0.7% of the market) as potentially free-riding off of ZEV States’ policy (covering 23% of the market). Results indicate that free-ridership is not effective; even with the ZEV mandate driving very high sales in ZEV States, British Columbia cannot achieve significant ZEV adoption without also implementing its own ZEV mandate. Further, for British Columbia to meet its 2050 GHG targets, it may need a ZEV mandate in addition to complementary climate policies—pushing ZEVs to account for 40–93% of new vehicle sales in 2050. In short, regions seeking low-carbon transportation likely need to implement their own stringent policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu75 citations 75 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2017.08.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:SSHRCSSHRCAuthors:Ekaterina Rhodes;
Ekaterina Rhodes
Ekaterina Rhodes in OpenAIREWilliam A. Scott;
Mark Jaccard;William A. Scott
William A. Scott in OpenAIREAbstract Carbon pricing is widely recognized as the most economically efficient policy to reduce greenhouse gas emissions. However, its high-cost visibility creates political challenges for its implementation at a sufficiently stringent level to achieve deep decarbonization. Flexible regulations, such as renewable portfolio standards and low-carbon fuels standards, incorporate flexibility mechanisms similar to carbon pricing, but seem to face lessor political acceptability barriers. Unlike prescriptive (command-and-control) regulations, flexible regulations do not require technologically-specific compliance pathways and allow credit trading to reduce costs and incentivize innovation. Despite their potential for driving the decarbonization transition, there is comparatively little research on the design and impact of flexible regulations implemented to date. This comparative policy analysis examines government policy documents and academic literature to identify flexible climate regulations implemented in OECD countries and evaluates their implementation context, design characteristics, effectiveness, and public support. In total, 61 unique flexible regulations were identified across 11 countries and 42 sub-national jurisdictions that can be classified into six categories. Findings suggest that as jurisdictions seek to strengthen their climate policy portfolios, flexible regulations can provide a relatively cost effective, broadly supported, and complementary tool to achieve deep emissions reductions, so long as policies are well-designed and interaction and equity impacts are considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu