- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 12. Responsible consumption
- GB
- BG
- English
- Energy Research
- 7. Clean energy
- 11. Sustainability
- 12. Responsible consumption
- GB
- BG
- English
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2023 United KingdomAuthors: Cesaro, Z;Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system. The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.
Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2023 United KingdomAuthors: Cesaro, Z;Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system. The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.
Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 11 Sep 2023Publisher:University of Essex Library Services Authors: Stefan Joseph Lygdopoulos;doi: 10.5526/esj.248
The 2022 World Cup organised by the International Association Football Federation (International Olympic Committee, 2021) and hosted by Qatar was billed to be the tournament that would completely revolutionise football, both on and off the field. It garnered acclaim in being the first World Cup held outside its customary months of June-July as well as in pioneering net zero carbon emissions in the sport - an assertion that ultimately proved largely unfounded(Ralston, 2022) with high reputational consequences for the country and the game. Non-governmental organisations (NGOs), like the Carbon Market Watch that works with the European Union amongst others, claimed that “carbon emissions created by the new stadiums could be as much as eight times higher than the figures contained in Qatar’s analysis” (MacInnes, 2022). Against the backdrop of mounting sustainability concerns expressed by policymakers and enthusiasts alike, this essay examines the environmental hazards associated with major sporting events, like the 2022 FIFA World Cup whilst delving into adaptations that organisers could make for future sporting bonanzas that would give their green aspirations wings that could fly without getting burned like the fabled Icarus whose own pride and arrogance led him to ignore the rising temperatures and ultimately cause his demise. Essex Student Journal Volume 14 Issue S1 2023
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 11 Sep 2023Publisher:University of Essex Library Services Authors: Stefan Joseph Lygdopoulos;doi: 10.5526/esj.248
The 2022 World Cup organised by the International Association Football Federation (International Olympic Committee, 2021) and hosted by Qatar was billed to be the tournament that would completely revolutionise football, both on and off the field. It garnered acclaim in being the first World Cup held outside its customary months of June-July as well as in pioneering net zero carbon emissions in the sport - an assertion that ultimately proved largely unfounded(Ralston, 2022) with high reputational consequences for the country and the game. Non-governmental organisations (NGOs), like the Carbon Market Watch that works with the European Union amongst others, claimed that “carbon emissions created by the new stadiums could be as much as eight times higher than the figures contained in Qatar’s analysis” (MacInnes, 2022). Against the backdrop of mounting sustainability concerns expressed by policymakers and enthusiasts alike, this essay examines the environmental hazards associated with major sporting events, like the 2022 FIFA World Cup whilst delving into adaptations that organisers could make for future sporting bonanzas that would give their green aspirations wings that could fly without getting burned like the fabled Icarus whose own pride and arrogance led him to ignore the rising temperatures and ultimately cause his demise. Essex Student Journal Volume 14 Issue S1 2023
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:University of Bayreuth Authors: Kaime, Thoko; Glicksman, Robert L;This Article examines the genesis and context of SE4All, placing the effort within both itshistorical and international policy contexts. It highlights the voluntary nature of the initiative andargues that its effective implementation and the achievement of its goals require the articulation ofan applicable international legal framework that aids the transformation of SE4All’s policy actionsinto binding international legal commitments. The article contends that such a transformation doesnot depend on the creation of entirely new legal rules or institutions. Instead, an effective frame-work for successful implementation of SE4All can be derived from existing rules of internationalhuman rights law and sustainable development law. Reliance on these twin bodies of interna-tional law will increase the prospects for SE4All to achieve energy access and related goals thatits predecessor initiatives have failed to accomplish
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:University of Bayreuth Authors: Kaime, Thoko; Glicksman, Robert L;This Article examines the genesis and context of SE4All, placing the effort within both itshistorical and international policy contexts. It highlights the voluntary nature of the initiative andargues that its effective implementation and the achievement of its goals require the articulation ofan applicable international legal framework that aids the transformation of SE4All’s policy actionsinto binding international legal commitments. The article contends that such a transformation doesnot depend on the creation of entirely new legal rules or institutions. Instead, an effective frame-work for successful implementation of SE4All can be derived from existing rules of internationalhuman rights law and sustainable development law. Reliance on these twin bodies of interna-tional law will increase the prospects for SE4All to achieve energy access and related goals thatits predecessor initiatives have failed to accomplish
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Telecommunications Society, Academic Mind Authors: S. Williams; M. Zhu; V. Marsic;This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Telecommunications Society, Academic Mind Authors: S. Williams; M. Zhu; V. Marsic;This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis , Doctoral thesis 2019Embargo end date: 06 Jun 2019 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Savaget, Paulo;doi: 10.17863/cam.40591
Systemic humanitarian, environmental, and socio-political problems are impeding current and future generations from meeting their very basic needs. The speed and scope of mainstream responses to the world’s most pressing problems are limited by agency failures and by the ‘rules of the game’. In this context, this research contributes to theory and practice by formulating and exploring the concept of Sustainability Hacking, a particularly advantageous change driver in situations where information is limited, resources are scarce, stakes are high, and decision-making is urgent. This research was conducted through 3 sequential stages. First, the researcher has systematically reviewed the literature on sociotechnical system change for sustainability. This review exposed and discussed 15 theoretical foundations that shape what changes are perceived as desirable and attainable, as well as how to navigate between all the coexisting pathways to drive positive change. By examining these foundations, it became possible to pinpoint opportunities for future contributions. Among them was the idea of investigating the meaning, characteristics and potential implications of Hacking as a change driver of sociotechnical systems. These were revealed in the 2nd research stage, after interviewing self-declared Hackers and cybersecurity experts to understand how they used the term and how they pursued their desired systemic changes. This stage provided the definition, as well as 9 dominant characteristics of System Hacking. The term refers to exploring unconventional solutions to a problem within sociotechnical systems. ‘Unconventional’ here means deviating from embedded institutions, i.e. the rules of the game in a society. Institutions represent sources of stability, coherence, and continuity of systems, while simultaneously shaping public expectations of what changes are viable and the heuristics of how they should be pursued. Differently from conventional approaches, system Hackers are not aiming at changing rules, neither are they passively complying with them. Instead, they work around the ‘rules of the game’ to accomplish ‘good-enough’ results promptly. The 3rd research stage consisted of investigating and working with Sustainability Hacks, i.e. System Hacks addressing pressing sustainability problems. This was performed through a combination of Action Research and Case Studies. Benefitting from a diverse database of 19 cases, the researcher conducted a cross-case analysis, which provided comprehensive observations on the 15 main similarities and 10 differences that constitute the key analytical variables of Sustainability Hacking. Furthermore, the analysis derived 5 Archetypes that can be used as frames of reference to provide guidance for practitioners evaluating possibilities of addressing pressing sustainability problems, as well as to support future academic contributions in this nascent field of research. Gates Cambridge
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis , Doctoral thesis 2019Embargo end date: 06 Jun 2019 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Savaget, Paulo;doi: 10.17863/cam.40591
Systemic humanitarian, environmental, and socio-political problems are impeding current and future generations from meeting their very basic needs. The speed and scope of mainstream responses to the world’s most pressing problems are limited by agency failures and by the ‘rules of the game’. In this context, this research contributes to theory and practice by formulating and exploring the concept of Sustainability Hacking, a particularly advantageous change driver in situations where information is limited, resources are scarce, stakes are high, and decision-making is urgent. This research was conducted through 3 sequential stages. First, the researcher has systematically reviewed the literature on sociotechnical system change for sustainability. This review exposed and discussed 15 theoretical foundations that shape what changes are perceived as desirable and attainable, as well as how to navigate between all the coexisting pathways to drive positive change. By examining these foundations, it became possible to pinpoint opportunities for future contributions. Among them was the idea of investigating the meaning, characteristics and potential implications of Hacking as a change driver of sociotechnical systems. These were revealed in the 2nd research stage, after interviewing self-declared Hackers and cybersecurity experts to understand how they used the term and how they pursued their desired systemic changes. This stage provided the definition, as well as 9 dominant characteristics of System Hacking. The term refers to exploring unconventional solutions to a problem within sociotechnical systems. ‘Unconventional’ here means deviating from embedded institutions, i.e. the rules of the game in a society. Institutions represent sources of stability, coherence, and continuity of systems, while simultaneously shaping public expectations of what changes are viable and the heuristics of how they should be pursued. Differently from conventional approaches, system Hackers are not aiming at changing rules, neither are they passively complying with them. Instead, they work around the ‘rules of the game’ to accomplish ‘good-enough’ results promptly. The 3rd research stage consisted of investigating and working with Sustainability Hacks, i.e. System Hacks addressing pressing sustainability problems. This was performed through a combination of Action Research and Case Studies. Benefitting from a diverse database of 19 cases, the researcher conducted a cross-case analysis, which provided comprehensive observations on the 15 main similarities and 10 differences that constitute the key analytical variables of Sustainability Hacking. Furthermore, the analysis derived 5 Archetypes that can be used as frames of reference to provide guidance for practitioners evaluating possibilities of addressing pressing sustainability problems, as well as to support future academic contributions in this nascent field of research. Gates Cambridge
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2019Publisher:Zenodo Authors: Rory McNicholl; Julie Allinson;The repository software dream has been a team of dedicated, in-house developers who work within their institutions and the various OS communities, hand-crafting new functionality and sharing the code. The reality has always been more complicated and messy. For a variety of reasons, many institutions find themselves without expert repository developers, but still needing to have bespoke work carried out. And commercial service providers have stepped up with offers to bridge this gap. Increasingly, institutions are working with such service providers as their technical partners. For the institutions, it means that OS software remains a viable option even without an in-house technical team. But can commercial providers be invested in Open Source in the same way that in-house developers are? Do they contribute to the long-term stability, sustainability and accessibility of OS software and communities, or are they just taking the money? The panel will present a range of views from both commercial service providers, those who keep technical expertise in-house, and some who do a little of both. We expect the discussion to be lively, though-provoking and insightful, hopefully sparking further discussions in the community about how we might continue to sustain the OS community within repositories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2019Publisher:Zenodo Authors: Rory McNicholl; Julie Allinson;The repository software dream has been a team of dedicated, in-house developers who work within their institutions and the various OS communities, hand-crafting new functionality and sharing the code. The reality has always been more complicated and messy. For a variety of reasons, many institutions find themselves without expert repository developers, but still needing to have bespoke work carried out. And commercial service providers have stepped up with offers to bridge this gap. Increasingly, institutions are working with such service providers as their technical partners. For the institutions, it means that OS software remains a viable option even without an in-house technical team. But can commercial providers be invested in Open Source in the same way that in-house developers are? Do they contribute to the long-term stability, sustainability and accessibility of OS software and communities, or are they just taking the money? The panel will present a range of views from both commercial service providers, those who keep technical expertise in-house, and some who do a little of both. We expect the discussion to be lively, though-provoking and insightful, hopefully sparking further discussions in the community about how we might continue to sustain the OS community within repositories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Iordache, Klaus Lieutenant; Ana Vassileva Borissova; Mohamad Mustafa; Nick McCarthy; Ioan;The authors compare the energy consumption and CO2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO2 emissions compared to combustion cars.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Iordache, Klaus Lieutenant; Ana Vassileva Borissova; Mohamad Mustafa; Nick McCarthy; Ioan;The authors compare the energy consumption and CO2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO2 emissions compared to combustion cars.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type 2016Embargo end date: 16 Feb 2017 United KingdomPublisher:Faculty of Economics Authors: Chan, G.; Anadon, L-D.;doi: 10.17863/cam.7842
Effective decision making to allocate public funds for energy technology research, development, and demonstration (R&D) requires considering alternative investment opportunities that can have large but highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and implements a method to support R&D decisions that propagates uncertainty through an economic model to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology substitution and complementarity. The proposed method improves on the existing literature by: (a) using estimates of the impact of R&D investments from one of the most comprehensive sets of expert elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of applying new methods to improve the cost-effectiveness and environmental performance in a deliberative approach to energy R&D portfolio decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type 2016Embargo end date: 16 Feb 2017 United KingdomPublisher:Faculty of Economics Authors: Chan, G.; Anadon, L-D.;doi: 10.17863/cam.7842
Effective decision making to allocate public funds for energy technology research, development, and demonstration (R&D) requires considering alternative investment opportunities that can have large but highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and implements a method to support R&D decisions that propagates uncertainty through an economic model to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology substitution and complementarity. The proposed method improves on the existing literature by: (a) using estimates of the impact of R&D investments from one of the most comprehensive sets of expert elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of applying new methods to improve the cost-effectiveness and environmental performance in a deliberative approach to energy R&D portfolio decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2023 United KingdomAuthors: Cesaro, Z;Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system. The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.
Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2023 United KingdomAuthors: Cesaro, Z;Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system. The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.
Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 11 Sep 2023Publisher:University of Essex Library Services Authors: Stefan Joseph Lygdopoulos;doi: 10.5526/esj.248
The 2022 World Cup organised by the International Association Football Federation (International Olympic Committee, 2021) and hosted by Qatar was billed to be the tournament that would completely revolutionise football, both on and off the field. It garnered acclaim in being the first World Cup held outside its customary months of June-July as well as in pioneering net zero carbon emissions in the sport - an assertion that ultimately proved largely unfounded(Ralston, 2022) with high reputational consequences for the country and the game. Non-governmental organisations (NGOs), like the Carbon Market Watch that works with the European Union amongst others, claimed that “carbon emissions created by the new stadiums could be as much as eight times higher than the figures contained in Qatar’s analysis” (MacInnes, 2022). Against the backdrop of mounting sustainability concerns expressed by policymakers and enthusiasts alike, this essay examines the environmental hazards associated with major sporting events, like the 2022 FIFA World Cup whilst delving into adaptations that organisers could make for future sporting bonanzas that would give their green aspirations wings that could fly without getting burned like the fabled Icarus whose own pride and arrogance led him to ignore the rising temperatures and ultimately cause his demise. Essex Student Journal Volume 14 Issue S1 2023
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 11 Sep 2023Publisher:University of Essex Library Services Authors: Stefan Joseph Lygdopoulos;doi: 10.5526/esj.248
The 2022 World Cup organised by the International Association Football Federation (International Olympic Committee, 2021) and hosted by Qatar was billed to be the tournament that would completely revolutionise football, both on and off the field. It garnered acclaim in being the first World Cup held outside its customary months of June-July as well as in pioneering net zero carbon emissions in the sport - an assertion that ultimately proved largely unfounded(Ralston, 2022) with high reputational consequences for the country and the game. Non-governmental organisations (NGOs), like the Carbon Market Watch that works with the European Union amongst others, claimed that “carbon emissions created by the new stadiums could be as much as eight times higher than the figures contained in Qatar’s analysis” (MacInnes, 2022). Against the backdrop of mounting sustainability concerns expressed by policymakers and enthusiasts alike, this essay examines the environmental hazards associated with major sporting events, like the 2022 FIFA World Cup whilst delving into adaptations that organisers could make for future sporting bonanzas that would give their green aspirations wings that could fly without getting burned like the fabled Icarus whose own pride and arrogance led him to ignore the rising temperatures and ultimately cause his demise. Essex Student Journal Volume 14 Issue S1 2023
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:University of Bayreuth Authors: Kaime, Thoko; Glicksman, Robert L;This Article examines the genesis and context of SE4All, placing the effort within both itshistorical and international policy contexts. It highlights the voluntary nature of the initiative andargues that its effective implementation and the achievement of its goals require the articulation ofan applicable international legal framework that aids the transformation of SE4All’s policy actionsinto binding international legal commitments. The article contends that such a transformation doesnot depend on the creation of entirely new legal rules or institutions. Instead, an effective frame-work for successful implementation of SE4All can be derived from existing rules of internationalhuman rights law and sustainable development law. Reliance on these twin bodies of interna-tional law will increase the prospects for SE4All to achieve energy access and related goals thatits predecessor initiatives have failed to accomplish
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United KingdomPublisher:University of Bayreuth Authors: Kaime, Thoko; Glicksman, Robert L;This Article examines the genesis and context of SE4All, placing the effort within both itshistorical and international policy contexts. It highlights the voluntary nature of the initiative andargues that its effective implementation and the achievement of its goals require the articulation ofan applicable international legal framework that aids the transformation of SE4All’s policy actionsinto binding international legal commitments. The article contends that such a transformation doesnot depend on the creation of entirely new legal rules or institutions. Instead, an effective frame-work for successful implementation of SE4All can be derived from existing rules of internationalhuman rights law and sustainable development law. Reliance on these twin bodies of interna-tional law will increase the prospects for SE4All to achieve energy access and related goals thatits predecessor initiatives have failed to accomplish
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15495/epub_ubt_00004910&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Telecommunications Society, Academic Mind Authors: S. Williams; M. Zhu; V. Marsic;This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Telecommunications Society, Academic Mind Authors: S. Williams; M. Zhu; V. Marsic;This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis , Doctoral thesis 2019Embargo end date: 06 Jun 2019 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Savaget, Paulo;doi: 10.17863/cam.40591
Systemic humanitarian, environmental, and socio-political problems are impeding current and future generations from meeting their very basic needs. The speed and scope of mainstream responses to the world’s most pressing problems are limited by agency failures and by the ‘rules of the game’. In this context, this research contributes to theory and practice by formulating and exploring the concept of Sustainability Hacking, a particularly advantageous change driver in situations where information is limited, resources are scarce, stakes are high, and decision-making is urgent. This research was conducted through 3 sequential stages. First, the researcher has systematically reviewed the literature on sociotechnical system change for sustainability. This review exposed and discussed 15 theoretical foundations that shape what changes are perceived as desirable and attainable, as well as how to navigate between all the coexisting pathways to drive positive change. By examining these foundations, it became possible to pinpoint opportunities for future contributions. Among them was the idea of investigating the meaning, characteristics and potential implications of Hacking as a change driver of sociotechnical systems. These were revealed in the 2nd research stage, after interviewing self-declared Hackers and cybersecurity experts to understand how they used the term and how they pursued their desired systemic changes. This stage provided the definition, as well as 9 dominant characteristics of System Hacking. The term refers to exploring unconventional solutions to a problem within sociotechnical systems. ‘Unconventional’ here means deviating from embedded institutions, i.e. the rules of the game in a society. Institutions represent sources of stability, coherence, and continuity of systems, while simultaneously shaping public expectations of what changes are viable and the heuristics of how they should be pursued. Differently from conventional approaches, system Hackers are not aiming at changing rules, neither are they passively complying with them. Instead, they work around the ‘rules of the game’ to accomplish ‘good-enough’ results promptly. The 3rd research stage consisted of investigating and working with Sustainability Hacks, i.e. System Hacks addressing pressing sustainability problems. This was performed through a combination of Action Research and Case Studies. Benefitting from a diverse database of 19 cases, the researcher conducted a cross-case analysis, which provided comprehensive observations on the 15 main similarities and 10 differences that constitute the key analytical variables of Sustainability Hacking. Furthermore, the analysis derived 5 Archetypes that can be used as frames of reference to provide guidance for practitioners evaluating possibilities of addressing pressing sustainability problems, as well as to support future academic contributions in this nascent field of research. Gates Cambridge
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis , Doctoral thesis 2019Embargo end date: 06 Jun 2019 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Savaget, Paulo;doi: 10.17863/cam.40591
Systemic humanitarian, environmental, and socio-political problems are impeding current and future generations from meeting their very basic needs. The speed and scope of mainstream responses to the world’s most pressing problems are limited by agency failures and by the ‘rules of the game’. In this context, this research contributes to theory and practice by formulating and exploring the concept of Sustainability Hacking, a particularly advantageous change driver in situations where information is limited, resources are scarce, stakes are high, and decision-making is urgent. This research was conducted through 3 sequential stages. First, the researcher has systematically reviewed the literature on sociotechnical system change for sustainability. This review exposed and discussed 15 theoretical foundations that shape what changes are perceived as desirable and attainable, as well as how to navigate between all the coexisting pathways to drive positive change. By examining these foundations, it became possible to pinpoint opportunities for future contributions. Among them was the idea of investigating the meaning, characteristics and potential implications of Hacking as a change driver of sociotechnical systems. These were revealed in the 2nd research stage, after interviewing self-declared Hackers and cybersecurity experts to understand how they used the term and how they pursued their desired systemic changes. This stage provided the definition, as well as 9 dominant characteristics of System Hacking. The term refers to exploring unconventional solutions to a problem within sociotechnical systems. ‘Unconventional’ here means deviating from embedded institutions, i.e. the rules of the game in a society. Institutions represent sources of stability, coherence, and continuity of systems, while simultaneously shaping public expectations of what changes are viable and the heuristics of how they should be pursued. Differently from conventional approaches, system Hackers are not aiming at changing rules, neither are they passively complying with them. Instead, they work around the ‘rules of the game’ to accomplish ‘good-enough’ results promptly. The 3rd research stage consisted of investigating and working with Sustainability Hacks, i.e. System Hacks addressing pressing sustainability problems. This was performed through a combination of Action Research and Case Studies. Benefitting from a diverse database of 19 cases, the researcher conducted a cross-case analysis, which provided comprehensive observations on the 15 main similarities and 10 differences that constitute the key analytical variables of Sustainability Hacking. Furthermore, the analysis derived 5 Archetypes that can be used as frames of reference to provide guidance for practitioners evaluating possibilities of addressing pressing sustainability problems, as well as to support future academic contributions in this nascent field of research. Gates Cambridge
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.40591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2019Publisher:Zenodo Authors: Rory McNicholl; Julie Allinson;The repository software dream has been a team of dedicated, in-house developers who work within their institutions and the various OS communities, hand-crafting new functionality and sharing the code. The reality has always been more complicated and messy. For a variety of reasons, many institutions find themselves without expert repository developers, but still needing to have bespoke work carried out. And commercial service providers have stepped up with offers to bridge this gap. Increasingly, institutions are working with such service providers as their technical partners. For the institutions, it means that OS software remains a viable option even without an in-house technical team. But can commercial providers be invested in Open Source in the same way that in-house developers are? Do they contribute to the long-term stability, sustainability and accessibility of OS software and communities, or are they just taking the money? The panel will present a range of views from both commercial service providers, those who keep technical expertise in-house, and some who do a little of both. We expect the discussion to be lively, though-provoking and insightful, hopefully sparking further discussions in the community about how we might continue to sustain the OS community within repositories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Presentation , Other literature type 2019Publisher:Zenodo Authors: Rory McNicholl; Julie Allinson;The repository software dream has been a team of dedicated, in-house developers who work within their institutions and the various OS communities, hand-crafting new functionality and sharing the code. The reality has always been more complicated and messy. For a variety of reasons, many institutions find themselves without expert repository developers, but still needing to have bespoke work carried out. And commercial service providers have stepped up with offers to bridge this gap. Increasingly, institutions are working with such service providers as their technical partners. For the institutions, it means that OS software remains a viable option even without an in-house technical team. But can commercial providers be invested in Open Source in the same way that in-house developers are? Do they contribute to the long-term stability, sustainability and accessibility of OS software and communities, or are they just taking the money? The panel will present a range of views from both commercial service providers, those who keep technical expertise in-house, and some who do a little of both. We expect the discussion to be lively, though-provoking and insightful, hopefully sparking further discussions in the community about how we might continue to sustain the OS community within repositories.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 3 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3554066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Iordache, Klaus Lieutenant; Ana Vassileva Borissova; Mohamad Mustafa; Nick McCarthy; Ioan;The authors compare the energy consumption and CO2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO2 emissions compared to combustion cars.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Iordache, Klaus Lieutenant; Ana Vassileva Borissova; Mohamad Mustafa; Nick McCarthy; Ioan;The authors compare the energy consumption and CO2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO2 emissions compared to combustion cars.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type 2016Embargo end date: 16 Feb 2017 United KingdomPublisher:Faculty of Economics Authors: Chan, G.; Anadon, L-D.;doi: 10.17863/cam.7842
Effective decision making to allocate public funds for energy technology research, development, and demonstration (R&D) requires considering alternative investment opportunities that can have large but highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and implements a method to support R&D decisions that propagates uncertainty through an economic model to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology substitution and complementarity. The proposed method improves on the existing literature by: (a) using estimates of the impact of R&D investments from one of the most comprehensive sets of expert elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of applying new methods to improve the cost-effectiveness and environmental performance in a deliberative approach to energy R&D portfolio decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type 2016Embargo end date: 16 Feb 2017 United KingdomPublisher:Faculty of Economics Authors: Chan, G.; Anadon, L-D.;doi: 10.17863/cam.7842
Effective decision making to allocate public funds for energy technology research, development, and demonstration (R&D) requires considering alternative investment opportunities that can have large but highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and implements a method to support R&D decisions that propagates uncertainty through an economic model to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology substitution and complementarity. The proposed method improves on the existing literature by: (a) using estimates of the impact of R&D investments from one of the most comprehensive sets of expert elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of applying new methods to improve the cost-effectiveness and environmental performance in a deliberative approach to energy R&D portfolio decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu