- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Restricted
- Embargo
- 12. Responsible consumption
- US
- IN
- BG
- Energy Research
- Open Access
- Closed Access
- Restricted
- Embargo
- 12. Responsible consumption
- US
- IN
- BG
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Apr 2023Publisher:Dryad Authors: Pahwa, Anmol; Jaller, Miguel;doi: 10.25338/b8w93s
This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2024Publisher:Zenodo Authors: Valenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; +6 AuthorsValenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; Gilson, Florent; Miraldo, Marcel C.; Matos, Flavia T.; Flickinger, Dallas L.; Dantas, Daniela P.; Rodrigues, Laurindo A.;Indicators of economic sustainability obtained for the 8 systems of LTS studied. Monoc. = monoculture; sub-trop. = subtropical; IMTA = integrated multi trophic aquaculture; “-“ = no data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 03 Apr 2023Publisher:Dryad Dunn, Jessica; Slattery, Margaret; Kendall, Alissa; Ambrose, Hanjiro; Shen, Shuhan;doi: 10.25338/b82w7q
Batteries have the potential to significantly reduce greenhouse gas emissions from on-road transportation. However, environmental and social impacts of producing lithium-ion batteries, particularly cathode materials, and concerns over material criticality are frequently highlighted as barriers to widespread electric vehicle adoption. Circular economy strategies, like reuse and recycling, can reduce impacts and secure regional supplies. To understand the potential for circularity, we undertake a dynamic global material flow analysis of pack-level materials that includes scenario analysis for changing battery cathode chemistries and electric vehicle demand. Results are produced regionwise and through the year 2040 to estimate the potential global and regional circularity of lithium, cobalt, nickel, manganese, iron, aluminum, copper, and graphite, although the analysis is focused on the cathode materials. Under idealized conditions, retired batteries could supply 60% of cobalt, 53% of lithium, 57% of manganese, and 53% of nickel globally in 2040. If the current mix of cathode chemistries evolves to a market dominated by NMC 811, a low cobalt chemistry, there is potential for 85% global circularity of cobalt in 2040. If the market steers away from cathodes containing cobalt, to an LFP-dominated market, cobalt, manganese, and nickel become less relevant and reach circularity before 2040. For each market to benefit from the recovery of secondary materials, recycling and manufacturing infrastructure must be developed in each region. This data was collected through various sources, including from EV Volumes, International Energy Agency, Argonne National Lab, and published articles. A model was created with R to process the data. R is required to open the models.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 104 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Springer Science and Business Media LLC Authors: Devendra Prasad Maurya; Ankit Singla; Sangeeta Negi;Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to bioethanol needs some new fermentation technologies to make the whole process inexpensive. The main goal of pretreatment is to increase the digestibility of maximum available sugars. Each pretreatment process has a specific effect on the cellulose, hemicellulose and lignin fraction; thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The cost of ethanol production from lignocellulosic biomass in current technologies is relatively high. Additionally, low yield still remains as one of the main challenges. This paper reviews the various technologies for maximum conversion of cellulose and hemicelluloses fraction to ethanol, and it point outs several key properties that should be targeted for low cost and maximum yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Sung Min Park; Jun Seok Kim; Jin-Suk Lee; Soon-Chul Park; Jin Woo Kim; Jae Chan Park;pmid: 20061145
The current status and challenges associated with the production and utilization of cellulosic ethanol in Korea are reviewed in this paper. Cellulosic ethanol has emerged as a promising option for mitigating Korea's CO(2) emissions and enhancing its energy security. Korea's limited biomass resources is the most critical barrier to achieving its implementation targets for cellulosic ethanol. Efforts to identify new suitable biomass resources for cellulosic ethanol production are ongoing and intensive. Aquatic biomasses including macroalgae and plantation wastes collected in the Southeast Asia region have been found to have great potential as feedstocks for the production of cellulosic ethanol. R&D explorations into the development of technologies that can convert biomass materials to ethanol more efficiently also are underway. It is expected that cellulosic ethanol will be in supply from 2020 and that, by 2030, its use will have effectively reduced Korea's total gasoline consumption by 10%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Publicly fundedAuthors: Kate K. Mulvaney; Michael Nye;doi: 10.3390/su8020182
Understanding the system of connections between societal contexts and policy outcomes in municipal governments provides important insights into how community sustainability happens, and why it happens differently in various communities. A growing body of research in recent years has focused on understanding the socio-economic characteristics of communities and cities that are recognized as policy leaders in sustainability. In this paper, we expand the focus beyond the leaders in sustainability as we apply a selection of socio-demographic influences of community sustainability to a large sample of U.S. communities using community classification analytics to identity a range of community types and levels of engagement with sustainability. Our typology presents an integrated and comprehensive perspective on the structure of community sustainability in the United States, highlighting key points of comparison between human capital factors such as population size and density, affluence, home ownership, and adoption of sustainability policy. The analysis provides new insights not only about community leaders in sustainability, but also communities with the civic and social capacity to do more, and the challenges that may inhibit sustainability efforts in others.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; Amritpreet Kaur Minhas;Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Authors: Mubasher Iqbal; Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;Purpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.
Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 20 Apr 2023Publisher:Dryad Authors: Pahwa, Anmol; Jaller, Miguel;doi: 10.25338/b8w93s
This work models a last-mile network design problem for an e-retailer with a capacitated two-echelon distribution structure - typical in e-retail last-mile distribution, catering to a market with a stochastic and dynamic daily customer demand requesting delivery within time-windows. Considering the distribution evnironment, this work formulates last-mile network design problem for this e-retailer as a dynamic-stochastic two capacitated location routing problem with time-windows. In doing so, this work splits the last-mile network design problem into its constituent strategic, tactical, and operational decisions. Here, the strategic decisions undertake long-term planning to develop a distribution structure with appropriate distribution facilities and a suitable delivery fleet to service the expected customer demand in the planning horizon. The tactical decisions pertain to medium-term day-to-day planning of last-mile delivery operations to establish efficient goods flow in this distribution structure to service the daily stochastic customer demand. And finally, operational decisions involve immediate short-term planning to fine-tune this last-mile delivery to service the requests arriving dynamically through the day. Note, the last-mile network design problem formulated as a location routing problem constitutes three subproblems encompassing facility location problem, customer allocation problem, and vehicle routing problem, each of which are NP-hard combinatorial optimization problems. To this end, this work develops an adaptive large neighborhood search meta-heuristic algorithm that searches through the neighborhood by destroying and consequently repairing the solution thereby reconfiguring large portions of the solution with specific operators that are chosen adaptively in each iteration of the algorithm, hence the name adaptive large neighborhood search. Further, considering the stochastic and dynamic nature of the delivery environment, this work develops a Monte-Carlo framework simulating each day in the planning horizon, with each day divided into 1-hr timeslots, and with each time-slot accepting customer requests for service by the end of the day. In particular, the framework assumes the e-retailer will delay route commitments until the last-feasible time-slot to accumulate customer requests and consequently assign them to an uncommitted delivery route. Note, a delivery route is committed once the e-retailer starts loading packages assigned to this delivery route onto the delivery vehicle assigned for this delivery route. At the end of every time-slot then, this framework assumes the e-retailer integrates the new customer requests by inserting these customer nodes into such uncommitted delivery routes in a manner that results in the least increase in distribution cost keeping the customer-distribution facility allocation fixed. Thus, the framework iterates through the time-slots with the e-retailer processing route commitments, accumulating customer requests, and subsequently integrating them into the delivery operations for the day. E-commerce has the potential to make urban goods flow economically viable, environmentally efficient, and socially equitable. However, as e-retailers compete with increasingly consumer-focused services, urban freight witnesses a significant increase in associated distribution costs and negative externalities particularly affecting those living close to logistics clusters. Hence, to remain competitive, e-retailers deploy alternate last-mile distribution strategies. These alternate strategies, such as those that include use of electric delivery trucks for last-mile operations, a fleet of crowdsourced drivers for last-mile delivery, consolidation facilities coupled with light-duty delivery vehicles for a multi-echelon distribution, or collection points for customer pickup, can restore sustainable urban goods flow. Thus, in this study, the authors investigate the opportunities and challenges associated with such alternate last-mile distribution strategies for an e-retailer offering expedited service with rush delivery within strict timeframes. To this end, the authors formulate a last-mile network design (LMND) problem as a dynamic-stochastic two-echelon capacitated location routing problem with time-windows (DS-2E-C-LRP-TW) addressed with an adaptive large neighborhood search (ALNS) metaheuristic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b8w93s&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Oct 2024Publisher:Zenodo Authors: Valenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; +6 AuthorsValenti, Wagner Cotroni; Moraes-Valenti, Patricia; Fonseca, Tamara; Dioniso S. Sampaio; Gilson, Florent; Miraldo, Marcel C.; Matos, Flavia T.; Flickinger, Dallas L.; Dantas, Daniela P.; Rodrigues, Laurindo A.;Indicators of economic sustainability obtained for the 8 systems of LTS studied. Monoc. = monoculture; sub-trop. = subtropical; IMTA = integrated multi trophic aquaculture; “-“ = no data.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8423253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 03 Apr 2023Publisher:Dryad Dunn, Jessica; Slattery, Margaret; Kendall, Alissa; Ambrose, Hanjiro; Shen, Shuhan;doi: 10.25338/b82w7q
Batteries have the potential to significantly reduce greenhouse gas emissions from on-road transportation. However, environmental and social impacts of producing lithium-ion batteries, particularly cathode materials, and concerns over material criticality are frequently highlighted as barriers to widespread electric vehicle adoption. Circular economy strategies, like reuse and recycling, can reduce impacts and secure regional supplies. To understand the potential for circularity, we undertake a dynamic global material flow analysis of pack-level materials that includes scenario analysis for changing battery cathode chemistries and electric vehicle demand. Results are produced regionwise and through the year 2040 to estimate the potential global and regional circularity of lithium, cobalt, nickel, manganese, iron, aluminum, copper, and graphite, although the analysis is focused on the cathode materials. Under idealized conditions, retired batteries could supply 60% of cobalt, 53% of lithium, 57% of manganese, and 53% of nickel globally in 2040. If the current mix of cathode chemistries evolves to a market dominated by NMC 811, a low cobalt chemistry, there is potential for 85% global circularity of cobalt in 2040. If the market steers away from cathodes containing cobalt, to an LFP-dominated market, cobalt, manganese, and nickel become less relevant and reach circularity before 2040. For each market to benefit from the recovery of secondary materials, recycling and manufacturing infrastructure must be developed in each region. This data was collected through various sources, including from EV Volumes, International Energy Agency, Argonne National Lab, and published articles. A model was created with R to process the data. R is required to open the models.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 23visibility views 23 download downloads 104 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25338/b82w7q&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:Springer Science and Business Media LLC Authors: Devendra Prasad Maurya; Ankit Singla; Sangeeta Negi;Second-generation bioethanol can be produced from various lignocellulosic biomasses such as wood, agricultural or forest residues. Lignocellulosic biomass is inexpensive, renewable and abundant source for bioethanol production. The conversion of lignocellulosic biomass to bioethanol could be a promising technology though the process has several challenges and limitations such as biomass transport and handling, and efficient pretreatment methods for total delignification of lignocellulosics. Proper pretreatment methods can increase concentrations of fermentable sugars after enzymatic saccharification, thereby improving the efficiency of the whole process. Conversion of glucose as well as xylose to bioethanol needs some new fermentation technologies to make the whole process inexpensive. The main goal of pretreatment is to increase the digestibility of maximum available sugars. Each pretreatment process has a specific effect on the cellulose, hemicellulose and lignin fraction; thus, different pretreatment methods and conditions should be chosen according to the process configuration selected for the subsequent hydrolysis and fermentation steps. The cost of ethanol production from lignocellulosic biomass in current technologies is relatively high. Additionally, low yield still remains as one of the main challenges. This paper reviews the various technologies for maximum conversion of cellulose and hemicelluloses fraction to ethanol, and it point outs several key properties that should be targeted for low cost and maximum yield.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 389 citations 389 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13205-015-0279-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Sung Min Park; Jun Seok Kim; Jin-Suk Lee; Soon-Chul Park; Jin Woo Kim; Jae Chan Park;pmid: 20061145
The current status and challenges associated with the production and utilization of cellulosic ethanol in Korea are reviewed in this paper. Cellulosic ethanol has emerged as a promising option for mitigating Korea's CO(2) emissions and enhancing its energy security. Korea's limited biomass resources is the most critical barrier to achieving its implementation targets for cellulosic ethanol. Efforts to identify new suitable biomass resources for cellulosic ethanol production are ongoing and intensive. Aquatic biomasses including macroalgae and plantation wastes collected in the Southeast Asia region have been found to have great potential as feedstocks for the production of cellulosic ethanol. R&D explorations into the development of technologies that can convert biomass materials to ethanol more efficiently also are underway. It is expected that cellulosic ethanol will be in supply from 2020 and that, by 2030, its use will have effectively reduced Korea's total gasoline consumption by 10%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2009.12.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:MDPI AG Publicly fundedAuthors: Kate K. Mulvaney; Michael Nye;doi: 10.3390/su8020182
Understanding the system of connections between societal contexts and policy outcomes in municipal governments provides important insights into how community sustainability happens, and why it happens differently in various communities. A growing body of research in recent years has focused on understanding the socio-economic characteristics of communities and cities that are recognized as policy leaders in sustainability. In this paper, we expand the focus beyond the leaders in sustainability as we apply a selection of socio-demographic influences of community sustainability to a large sample of U.S. communities using community classification analytics to identity a range of community types and levels of engagement with sustainability. Our typology presents an integrated and comprehensive perspective on the structure of community sustainability in the United States, highlighting key points of comparison between human capital factors such as population size and density, affluence, home ownership, and adoption of sustainability policy. The analysis provides new insights not only about community leaders in sustainability, but also communities with the civic and social capacity to do more, and the challenges that may inhibit sustainability efforts in others.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su8020182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Gurpreet Kaur Nagi; Shovon Mandal; Suchitra Gaur; Priyanshu Jain; Amritpreet Kaur Minhas;Microalgae offer a great potential to contribute significantly as renewable fuels and documented as a promising platform for algae-based bio refineries. They provide solutions to mitigate the environmental concerns posed by conventional fuel sources; however, the production of microalgal biofuels in large scale production system encounters few technical challenges. High quantity of nutrients requirements and water cost constrain the scaling up microalgal biomass to large scale commercial production. Crop protection against biomass losses due to grazers or pathogens is another stumbling block in microalgal field cultivation. With our existing technologies, unless coupled with high-value or mid-value products, algal biofuel cannot reach the economic target. Many microalgal industries that started targeting biofuel in the last decade had now adopted parallel business plans focusing on algae by-products application as cosmetic supplements, nutraceuticals, oils, natural color, and animal feed. This review provides the current status and proposes a framework for key supply demand, challenges for cost-effective and sustainable use of water and nutrient. Emphasis is placed on the future industrial market status of value added by products of microalgal biomass. The cost factor for biorefinery process development needs to be addressed before its potential to be exploited for various value-added products with algal biofuel.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.735141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Authors: Mubasher Iqbal; Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;Purpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.
Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu