- home
- Advanced Search
- Energy Research
- Closed Access
- natural sciences
- AE
- QA
- BH
- Energy Research
- Closed Access
- natural sciences
- AE
- QA
- BH
description Publicationkeyboard_double_arrow_right Article , Journal 2019 QatarPublisher:Elsevier BV Probir Das; Mahmoud Thaher; Shoyeb Khan; Mohammad AbdulQuadir; Hareb Al-Jabri;In this study, the effect of culture salinity (4-6% NaCl) on the harvesting of two microalgal strains (i.e., Picochlorum sp., and Tetraselmis sp.) was investigated using pilot-scale TFF membranes. The cultures of these two strains were collected from their respective continuous cultivation in 2, 25,000 L raceway ponds. For both strains, an increase in culture salinity aggravated the membrane fouling and hence negatively influenced the permeate flux rate, biomass concentrating factor, and energy requirement in biomass harvesting. For the TFF membranes, an increase in 1% NaCl salinity, the volume of processed permeate reduced by 30-44 %, the energy consumption per unit volume of permeate increased by 3-63%, and the biomass concentrating factor reduced by 47-61%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jie Yuan; Gunawan Widjaja; Fatima Safaa Fahim; Bashar S. Bashar; Maria Jade Catalan Opulencia; Haydar Abdulameer Marhoon; Ngakan Ketut Acwin Dwijendra;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Zarook Shareefdeen; Zaeem Bin Babar;Volatile organic compounds (VOCs) including acetone, dichloromethane, ethanol, ethylene glycol, iso-propyl alcohol, and several other aromatic compounds are emitted during the manufacturing processes in electronic industries. These VOCs pose problems to human health and the environment. Stringent environmental legislations imposed by government agencies on VOCs force electronic industries to adopt effective air pollution-treatment methods. This article provides a detailed review of VOCs that are emitted from different processes in the electronic industry, conventional, and current technologies that are used to remove toxic air pollutants and an innovative application of biotechnology for removal of VOCs from electronic industry.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0594-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0594-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: Isa S. Qamber; Yousif M. Al-Butti;Abstract In order to find the transient probabilities that reflect the behaviour of a large electrical-power system or any other system, a suitable technique is needed. Before calculating the transient probabilities for the overall electrical power-system, which consists of a number of sub-systems (such as generators), the failure and repair rates of each generator are needed. These two coefficients can form a transition rate matrix which represent each sub-system. In the present study, the Kronecker technique is used to form the overall system: this is the first part of the current study. The second part is to find the transient probabilities following the fourth-order Runge–Kutta method. A number of examples related to the State of Bahrain are considered. In addition, by applying the new technique under investigation, we describe the behaviours of electric-power stations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(99)00053-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(99)00053-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 QatarPublisher:Springer Science and Business Media LLC Authors: Waware, Umesh S.; Hamouda, A. M. S.; Rashid, Mohd; Kasak, Peter;handle: 10576/13086
Semi-transparent and conducting thin film of poly(aniline-co-m-fluoroaniline) has been synthesized by a conventional oxidative copolymerization method using an aqueous solution of aniline, m-fluoroanilne as the monomers and ammonium persulfate as an oxidizing agent. The binding energy and crystalline behavior of copolymer have been characterized by XPS and XRD studies, respectively. The morphological and surface profile characterization has been performed by atomic force microscopy (AFM), and the thickness of the thin film (50–100 nm) has been studied by transmission electron microscope (TEM). An electrical AC conductivity of the copolymers has been measured in the low- and high-frequency regime. The permittivity of copolymer PA-co-m-FA50 has a higher value than polyaniline in the high-frequency regime and decreases with the increase of frequency. The composition of each copolymer has been confirmed by binding energies of C-C, C-N, and C-F in the XPS study. The dielectric behavior of PA-co-m-FA50 copolymer has been recorded in low- and high-frequency regime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11581-018-2516-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11581-018-2516-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Vincenzo Naddeo; Musthafa O. Mavukkandy; R. Uma Maheswari; Hassan A. Arafat; Jaya Sikder; Utpal Adhikari;Abstract Lignin forms a recalcitrant structure in lignocellulosic biomass and hence huge amount of enzymes are required for disintegrating it into their subsequent components, like glucose and other by-products. Thus, the pretreatment is an ineluctable step in the bioethanol scheme for the delignification of biomass and also the recovery of lignin, an emerging value added polymer in many industrial applications. A green facile method was developed wherein humic acid (HA) acts as a catalyst and surfactant in the alkali pretreatment of sugarcane bagasse for the step reduction in lignin recovery scheme with phenomenal properties and enhanced enzymatic-hydrolysis. HA assisted experiments were performed with and without calcium chloride (CaCl2). Effective disintegration of lignocellulose by the cleavage of β-O-4 moieties resulted in forming lignin and hydrolyzable biomaterial via two pathways. Possible covalent linkages between the HA and lignin resulted in the release of esters as a byproduct. Thus, the delignified biomass, the isolated lignin and a variety of esters, could be valorised in various industrial applications. The biomass was characterized by XRD and SEM analysis. The isolated lignin was characterized using FTIR, NMR, GPC, SEM, and TGA – DTA studies. The yield of recovered pure lignin for the two process was 90–100%, as measured through gravimetric analysis. The produced esters were confirmed using FTIR studies. Batch enzymatic hydrolysis was performed for the HA assisted de-lignified bagasse (without CaCl2), which demonstrated a 19% increase in glucose yield compared to the alkali treated bagasse. The produced hydrolysates were subjected to fermentation for the production of ethanol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Dattatray S. Dhawale; Pradnya Bodhankar; Neharani Sonawane; Pradip B. Sarawade;doi: 10.1039/c9se00208a
Oxygen evolution reaction (OER) in water splitting is one of the most critical and more demanding half-reactions in electrochemical devices; therefore, the design of highly efficient and nonprecious metal-based electrocatalysts is required.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00208a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00208a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Paco Laveille; Joao Uratani; Jose G. G. Barron; Michael Brodeur‐Campbell; Nilesh R. Chandak; Abraham George; Stephane Morin; Alejandro R. Galvan; Mikael Berthod;doi: 10.1002/bbb.2260
AbstractThe 2 ha pilot‐plant Seawater Energy and Agriculture System (SEAS) in Abu Dhabi, United Arab Emirates (UAE), integrates aquaculture ponds, which produce fish and shrimp, with fields of Salicornia and mangrove used as a natural filter to clean the waste seawater from the ponds. The SEAS is a sustainable solution that addresses the food security issues of countries with large deserts or arid regions. At the same time, it produces economically viable fuels from biomass, using non‐arable lands and non‐drinkable water. After harvesting and pressing Salicornia seeds (2 t ha−1 year−1), a custom‐made process serves to pre‐treat the vegetable oil (0.7 t ha−1 year−1) containing 85 wt% C18 and 10 wt% C16 fatty acids as triglycerides. The first step of the UOP Ecofining® process produces an oil composed of linear C15‐C18 alkanes. Analytical data suggest the oil feed converts at 60 wt% by hydrodeoxygenation and at 40 wt% through decarboxylation/decarbonylation. The subsequent hydrocracking/isomerization step provided 3.4 wt% C1–C4, 34.8 wt% green naphtha, 47.5 wt% sustainable aviation fuel (SAF), and 14.2 wt% green diesel. After distillation, the SAF has been certified following ASTM D7566 before being blended with conventional jet fuel and used successfully on a commercial passenger flight in January 2019. The techno‐economic study shows that the biorefinery part is economically sustainable when reaching a production scale of 900bbd, required for a SEAS surface of 20 000 ha. At this scale, expected revenue and conversion costs per MT of feed are, respectively, $589 and $290. The resulting benefit, associated with a CAPEX of $115M, would lead to a payback time of 6.9 years. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal 2016 ItalyPublisher:SPIE Authors: Matteo Chiesa; Julian C. Leland; Marco Stefancich; Harry Apostoleris;doi: 10.1117/12.2237786
We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.2237786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.2237786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tabbi Wilberforce; Abdul Ghani Olabi; Abdul Ghani Olabi; Abdul Ghani Olabi; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Enas Taha Sayed; Enas Taha Sayed;Abstract Most applications in energy storage devices revolve around the application of graphene. Graphene is capable of enhancing the performance, functionality as well as durability of many applications, but the commercialization of graphene still requires more research activity being conducted. This investigation explored the application of graphene in energy storage device, absorbers and electrochemical sensors. To expand the utilization of graphene, its present limitations must critically be addressed to improve their current performance. Again, in terms of applications, the advantages of graphene has widened their application in both electroanalytical and electrochemical sensors. These good characteristics of graphene must be extended further and improved to make them suitable for other applications. Critical study of facile synthesis of graphene coupled with detailed investigation into the structure of graphene oxide at the molecular level will equally improve the performance of this novel material. Effects of defects on the performance of graphene oxide was also identified as another key area of research that needs much attention to accelerate the commercialization of this material. With the rapid growth in the application of the graphene in different energy storage/conversion applications, it is essential to summarize and discuss the up-to-date progress in the application of graphene in these fields.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 573 citations 573 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 QatarPublisher:Elsevier BV Probir Das; Mahmoud Thaher; Shoyeb Khan; Mohammad AbdulQuadir; Hareb Al-Jabri;In this study, the effect of culture salinity (4-6% NaCl) on the harvesting of two microalgal strains (i.e., Picochlorum sp., and Tetraselmis sp.) was investigated using pilot-scale TFF membranes. The cultures of these two strains were collected from their respective continuous cultivation in 2, 25,000 L raceway ponds. For both strains, an increase in culture salinity aggravated the membrane fouling and hence negatively influenced the permeate flux rate, biomass concentrating factor, and energy requirement in biomass harvesting. For the TFF membranes, an increase in 1% NaCl salinity, the volume of processed permeate reduced by 30-44 %, the energy consumption per unit volume of permeate increased by 3-63%, and the biomass concentrating factor reduced by 47-61%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2019.122057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Jie Yuan; Gunawan Widjaja; Fatima Safaa Fahim; Bashar S. Bashar; Maria Jade Catalan Opulencia; Haydar Abdulameer Marhoon; Ngakan Ketut Acwin Dwijendra;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2022.102363&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Authors: Zarook Shareefdeen; Zaeem Bin Babar;Volatile organic compounds (VOCs) including acetone, dichloromethane, ethanol, ethylene glycol, iso-propyl alcohol, and several other aromatic compounds are emitted during the manufacturing processes in electronic industries. These VOCs pose problems to human health and the environment. Stringent environmental legislations imposed by government agencies on VOCs force electronic industries to adopt effective air pollution-treatment methods. This article provides a detailed review of VOCs that are emitted from different processes in the electronic industry, conventional, and current technologies that are used to remove toxic air pollutants and an innovative application of biotechnology for removal of VOCs from electronic industry.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0594-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-013-0594-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999Publisher:Elsevier BV Authors: Isa S. Qamber; Yousif M. Al-Butti;Abstract In order to find the transient probabilities that reflect the behaviour of a large electrical-power system or any other system, a suitable technique is needed. Before calculating the transient probabilities for the overall electrical power-system, which consists of a number of sub-systems (such as generators), the failure and repair rates of each generator are needed. These two coefficients can form a transition rate matrix which represent each sub-system. In the present study, the Kronecker technique is used to form the overall system: this is the first part of the current study. The second part is to find the transient probabilities following the fourth-order Runge–Kutta method. A number of examples related to the State of Bahrain are considered. In addition, by applying the new technique under investigation, we describe the behaviours of electric-power stations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(99)00053-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0306-2619(99)00053-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 QatarPublisher:Springer Science and Business Media LLC Authors: Waware, Umesh S.; Hamouda, A. M. S.; Rashid, Mohd; Kasak, Peter;handle: 10576/13086
Semi-transparent and conducting thin film of poly(aniline-co-m-fluoroaniline) has been synthesized by a conventional oxidative copolymerization method using an aqueous solution of aniline, m-fluoroanilne as the monomers and ammonium persulfate as an oxidizing agent. The binding energy and crystalline behavior of copolymer have been characterized by XPS and XRD studies, respectively. The morphological and surface profile characterization has been performed by atomic force microscopy (AFM), and the thickness of the thin film (50–100 nm) has been studied by transmission electron microscope (TEM). An electrical AC conductivity of the copolymers has been measured in the low- and high-frequency regime. The permittivity of copolymer PA-co-m-FA50 has a higher value than polyaniline in the high-frequency regime and decreases with the increase of frequency. The composition of each copolymer has been confirmed by binding energies of C-C, C-N, and C-F in the XPS study. The dielectric behavior of PA-co-m-FA50 copolymer has been recorded in low- and high-frequency regime.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11581-018-2516-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11581-018-2516-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Vincenzo Naddeo; Musthafa O. Mavukkandy; R. Uma Maheswari; Hassan A. Arafat; Jaya Sikder; Utpal Adhikari;Abstract Lignin forms a recalcitrant structure in lignocellulosic biomass and hence huge amount of enzymes are required for disintegrating it into their subsequent components, like glucose and other by-products. Thus, the pretreatment is an ineluctable step in the bioethanol scheme for the delignification of biomass and also the recovery of lignin, an emerging value added polymer in many industrial applications. A green facile method was developed wherein humic acid (HA) acts as a catalyst and surfactant in the alkali pretreatment of sugarcane bagasse for the step reduction in lignin recovery scheme with phenomenal properties and enhanced enzymatic-hydrolysis. HA assisted experiments were performed with and without calcium chloride (CaCl2). Effective disintegration of lignocellulose by the cleavage of β-O-4 moieties resulted in forming lignin and hydrolyzable biomaterial via two pathways. Possible covalent linkages between the HA and lignin resulted in the release of esters as a byproduct. Thus, the delignified biomass, the isolated lignin and a variety of esters, could be valorised in various industrial applications. The biomass was characterized by XRD and SEM analysis. The isolated lignin was characterized using FTIR, NMR, GPC, SEM, and TGA – DTA studies. The yield of recovered pure lignin for the two process was 90–100%, as measured through gravimetric analysis. The produced esters were confirmed using FTIR studies. Batch enzymatic hydrolysis was performed for the HA assisted de-lignified bagasse (without CaCl2), which demonstrated a 19% increase in glucose yield compared to the alkali treated bagasse. The produced hydrolysates were subjected to fermentation for the production of ethanol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2020.105486&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) Authors: Dattatray S. Dhawale; Pradnya Bodhankar; Neharani Sonawane; Pradip B. Sarawade;doi: 10.1039/c9se00208a
Oxygen evolution reaction (OER) in water splitting is one of the most critical and more demanding half-reactions in electrochemical devices; therefore, the design of highly efficient and nonprecious metal-based electrocatalysts is required.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00208a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9se00208a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Paco Laveille; Joao Uratani; Jose G. G. Barron; Michael Brodeur‐Campbell; Nilesh R. Chandak; Abraham George; Stephane Morin; Alejandro R. Galvan; Mikael Berthod;doi: 10.1002/bbb.2260
AbstractThe 2 ha pilot‐plant Seawater Energy and Agriculture System (SEAS) in Abu Dhabi, United Arab Emirates (UAE), integrates aquaculture ponds, which produce fish and shrimp, with fields of Salicornia and mangrove used as a natural filter to clean the waste seawater from the ponds. The SEAS is a sustainable solution that addresses the food security issues of countries with large deserts or arid regions. At the same time, it produces economically viable fuels from biomass, using non‐arable lands and non‐drinkable water. After harvesting and pressing Salicornia seeds (2 t ha−1 year−1), a custom‐made process serves to pre‐treat the vegetable oil (0.7 t ha−1 year−1) containing 85 wt% C18 and 10 wt% C16 fatty acids as triglycerides. The first step of the UOP Ecofining® process produces an oil composed of linear C15‐C18 alkanes. Analytical data suggest the oil feed converts at 60 wt% by hydrodeoxygenation and at 40 wt% through decarboxylation/decarbonylation. The subsequent hydrocracking/isomerization step provided 3.4 wt% C1–C4, 34.8 wt% green naphtha, 47.5 wt% sustainable aviation fuel (SAF), and 14.2 wt% green diesel. After distillation, the SAF has been certified following ASTM D7566 before being blended with conventional jet fuel and used successfully on a commercial passenger flight in January 2019. The techno‐economic study shows that the biorefinery part is economically sustainable when reaching a production scale of 900bbd, required for a SEAS surface of 20 000 ha. At this scale, expected revenue and conversion costs per MT of feed are, respectively, $589 and $290. The resulting benefit, associated with a CAPEX of $115M, would lead to a payback time of 6.9 years. © 2021 Society of Chemical Industry and John Wiley & Sons, Ltd
Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biofuels Bioproducts... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.2260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Journal 2016 ItalyPublisher:SPIE Authors: Matteo Chiesa; Julian C. Leland; Marco Stefancich; Harry Apostoleris;doi: 10.1117/12.2237786
We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.2237786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.2237786&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tabbi Wilberforce; Abdul Ghani Olabi; Abdul Ghani Olabi; Abdul Ghani Olabi; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Mohammad Ali Abdelkareem; Enas Taha Sayed; Enas Taha Sayed;Abstract Most applications in energy storage devices revolve around the application of graphene. Graphene is capable of enhancing the performance, functionality as well as durability of many applications, but the commercialization of graphene still requires more research activity being conducted. This investigation explored the application of graphene in energy storage device, absorbers and electrochemical sensors. To expand the utilization of graphene, its present limitations must critically be addressed to improve their current performance. Again, in terms of applications, the advantages of graphene has widened their application in both electroanalytical and electrochemical sensors. These good characteristics of graphene must be extended further and improved to make them suitable for other applications. Critical study of facile synthesis of graphene coupled with detailed investigation into the structure of graphene oxide at the molecular level will equally improve the performance of this novel material. Effects of defects on the performance of graphene oxide was also identified as another key area of research that needs much attention to accelerate the commercialization of this material. With the rapid growth in the application of the graphene in different energy storage/conversion applications, it is essential to summarize and discuss the up-to-date progress in the application of graphene in these fields.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 573 citations 573 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu