- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOOrganization
- Energy Research
- BR
- Energy Research
- BR
Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Ngute, Alain Senghor K.; van der Heijden, Geertje M.F.; van Breugel, Michiel; Enquist, Brian J.; +7 AuthorsNgute, Alain Senghor K.; van der Heijden, Geertje M.F.; van Breugel, Michiel; Enquist, Brian J.; Gallagher, Rachael V.; Gehring, Christoph; Laurance, Susan G.W.; Laurance, William F.; Letcher, Susan; Liu, Wenyao; Phillips, Oliver L;In a meta-analysis, we use an unprecedented dataset, representing 556 unique locations worldwide, distributed across 44 countries and six continents to show for the first time that lianas (woody vines) thrive relatively better than trees when forests are disturbed, temperature increase, precipitation decrease, and particularly in tropical lowlands. We demonstrate that liana dominance can persist for decades post-disturbance and hinder the recovery of disturbed forests, especially when climate favours lianas. With implications for the global carbon sink, our findings suggest that degraded tropical forests with environmental conditions favouring lianas should be the highest priority to consider for restoration management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10428833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10428833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Authors: Alain Senghor K. Ngute; David S. Schoeman; Marion Pfeifer; Geertje M. F. van der Heijden; +16 AuthorsAlain Senghor K. Ngute; David S. Schoeman; Marion Pfeifer; Geertje M. F. van der Heijden; Oliver L. Phillips; Michiel van Breugel; Mason J. Campbell; Chris J. Chandler; Brian J. Enquist; Rachael V. Gallagher; Christoph Gehring; Jefferson S. Hall; Susan G. W. Laurance; William F. Laurance; Susan G. Letcher; Yu-Xuan Mo; Martin J. P. Sullivan; S. Joseph Wright; Chun-Ming Yuan; Andrew R. Marshall;pmid: 38273497
AbstractGrowing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Ngute, Alain Senghor K.; van der Heijden, Geertje M.F.; van Breugel, Michiel; Enquist, Brian J.; +7 AuthorsNgute, Alain Senghor K.; van der Heijden, Geertje M.F.; van Breugel, Michiel; Enquist, Brian J.; Gallagher, Rachael V.; Gehring, Christoph; Laurance, Susan G.W.; Laurance, William F.; Letcher, Susan; Liu, Wenyao; Phillips, Oliver L;In a meta-analysis, we use an unprecedented dataset, representing 556 unique locations worldwide, distributed across 44 countries and six continents to show for the first time that lianas (woody vines) thrive relatively better than trees when forests are disturbed, temperature increase, precipitation decrease, and particularly in tropical lowlands. We demonstrate that liana dominance can persist for decades post-disturbance and hinder the recovery of disturbed forests, especially when climate favours lianas. With implications for the global carbon sink, our findings suggest that degraded tropical forests with environmental conditions favouring lianas should be the highest priority to consider for restoration management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10428833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10428833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:Wiley Authors: Alain Senghor K. Ngute; David S. Schoeman; Marion Pfeifer; Geertje M. F. van der Heijden; +16 AuthorsAlain Senghor K. Ngute; David S. Schoeman; Marion Pfeifer; Geertje M. F. van der Heijden; Oliver L. Phillips; Michiel van Breugel; Mason J. Campbell; Chris J. Chandler; Brian J. Enquist; Rachael V. Gallagher; Christoph Gehring; Jefferson S. Hall; Susan G. W. Laurance; William F. Laurance; Susan G. Letcher; Yu-Xuan Mo; Martin J. P. Sullivan; S. Joseph Wright; Chun-Ming Yuan; Andrew R. Marshall;pmid: 38273497
AbstractGrowing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu