- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- CA
- BG
- Energy Research
- 7. Clean energy
- 13. Climate action
- CA
- BG
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jingda Wu; Zhongbao Wei; Kailong Liu; Zhongyi Quan; Yunwei Li;Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2014Publisher:IEEE Authors: S. Kiakojoori; Khashayar Khorasani;In this paper, fault prognosis of aircraft jet engines are considered using computationally intelligent-based methodologies to ensure flight safety and performance. Two different dynamic neural networks namely, the nonlinear autoregressive neural networks with exogenous input (NARX) and the Elman neural networks are developed and designed for this purpose. The proposed dynamic neural networks are designed to capture the dynamics of two main degradations in the jet engine, namely the compressor fouling and the turbine erosion. The health status and condition of the engine is then predicted subject to occurrence of these deteriorations. In both proposed approaches, two scenarios are considered. For each scenario, several neural networks are trained and their performance in predicting multi-flights ahead turbine output temperature are evaluated. Finally, the most suitable neural network for prediction is selected by using the normalized Bayesian information criterion model selection. Simulation results presented demonstrate and illustrate the effective performance of our proposed neural network-based prediction and prognosis strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ijcnn.2014.6889694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ijcnn.2014.6889694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rehan Sadiq; Kasun Hewage; Piyaruwan Perera;Abstract Recharging infrastructure (RI) deployment plays a vital role in improving the public recharging availability for transport electrification. Decarbonizing transportation using low-emission electricity requires massive RI network. Even though the consumers are reluctant to purchase electric vehicles (EVs) until RIs are sufficiently placed, the investors are not willing to invest in RIs due to recharging demand uncertainties. Therefore, a scientific planning framework is needed to ensure the sustainable deployment of EV-RIs in complex networks. In this study, a lifecycle thinking-based multi-period infrastructure-planning framework is proposed to develop sustainable public EV-RIs in an urban context. This framework consists of a temporal model to find the dynamic EV-RI demands, a stochastic model to obtain travel distances, and a multi-objective optimization model to select the best desirable capacities and locations for potential EV-RIs. A case study of a typical medium-scale municipality in Canada was assessed using the proposed framework and validated using conventional infrastructure planning scenarios. The geo-processing data, regional travel behaviors, and recharging characteristics were used as model inputs. The results of the case study showed that the proposed framework can be used to estimate multi-period public recharging demands, minimize lifecycle costs, maximize service coverage and infrastructure utilization, and ensure reasonable paybacks compared to conventional planning approaches. Moreover, this framework can be used to compare different investment assistances, which are required in the early stages of the RI deployment process to encourage investors. Furthermore, government and private institutions can use this framework to identify recharging demands, permitting, and developing RIs in the long-run.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Vishwa Bhusan Amatya; John Robinson; M. Chandrashekar;Abstract The residential sector accounts for most of energy-consumption in developing countries in the form of traditional energy. The use of commercial energy is nominal and confined mostly to urban areas where fuelwood is already monetized. A model, based on an end-use/process analysis approach, is developed on a spreadsheet, which is capable of simulating scenarios to address issues of increasing traditional energy-demand caused by population growth, sustainable supply capacity of the existing energy resources, potential for development of new and renewable energy resources, technology. This paper is divided into two parts: general energy issues and the modelling approach, and the application of this approach to Nepal in the context of fuelwood-supply sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90069-p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90069-p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Ter-Mikaelian, Michael T.; Gonsamo, Alemu; Chen, Jing M.; Mo, Gang; Chen, Jiaxin;Additional file 1. Histotical and projected C stocks and fluxes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14992766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14992766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Sommerfeld, Markus;These data sets provide the WRF [1] calculated wind data for Pritzwalk (onshore) and FINO3 (offshore) as Python dictionaries. Additionally, the files contain k-means cluster objects derived from these profiles. These data sets were used for power assessment and design exploration of Airborne Wind Energy Systems using the awebox [2] optimization toolbox. WRF setups are described in detail and used in publication [3,4,5]. Wind data are interpolated to fixed heights of: [10, 28, 50, 70, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 1000, 1200] meters above ground. Onshore wind data: Location lat: 53° 10.78' N; long: 12° 11.35' E Time: 1 September 2015 - 31 August 2016 Timestep: 10 min Offshore wind data: Location lat: 55° 11.7' N, long: 7° 9.5' E Time: 1 September 2013 - 31 August 2014 Timestep: 10 min The clusters are derived from both horizontal wind velocity components using the scikit-learn’s k-means clustering algorithm [6]. For our purposes, wind vectors were rotated such that the main wind speed always points in the same direction (u_main,u_deviation). [1]: Weather Research and Forecasting Model [2]: awebox [3]: Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems [4]: Offshore and onshore ground-generation airborne wind energy power curve characterization [5]:Ground-generation airborne wind energy design space exploration [6]: sklearn.cluster.KMeans
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 04 Nov 2021Publisher:Harvard Dataverse Authors: Stan, Kayla; Sanchez-Azofeifa, Arturo; Watt, Graham A.;doi: 10.7910/dvn/j0b3qd
Select monthly climate data for provinces in Canada. Monthly data includes mean temperature, maximum temperatures, minimum temperature, snow, precipitation, HDD, CDD, and Trade.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/j0b3qd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/j0b3qd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 08 Aug 2023Publisher:Dryad Authors: Harris, Lorna; Olefeldt, David;Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralisation and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 abd 4.5 m deep) along four chronosequences, from elevated permafrost plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 +/- 7.2 kg C m-2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 +/- 2.5 kg C m-2. We estimate ~19% (+/- 5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 +/- 7.9 kg C m-2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralisation of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.47d7wm3kk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.47d7wm3kk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Milovanoff, Alexandre; Posen, I. Daniel; MacLean, Heather L.;This repository contains the raw data of the inputs and results presented in the paper "Electrification of light-duty vehicle fleet alone will not meet mitigation targets" published in Nature Climate Change (2020) by Alexandre Milovanoff, I. Daniel Posen, and Heather L. MacLean (Department of Civil & Mineral Engineering, University of Toronto).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 43visibility views 43 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Nov 2017Publisher:Dryad Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; Power, Michael;doi: 10.5061/dryad.q659t
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Jingda Wu; Zhongbao Wei; Kailong Liu; Zhongyi Quan; Yunwei Li;Energy management is an enabling technique to guarantee the reliability and economy of hybrid electric systems. This paper proposes a novel machine learning-based energy management strategy for a hybrid electric bus (HEB), with an emphasized consciousness of both thermal safety and degradation of the onboard lithium-ion battery (LIB) system. Firstly, the deep deterministic policy gradient (DDPG) algorithm is combined with an expert-assistance system, for the first time, to enhance the “cold start” performance and optimize the power allocation of HEB. Secondly, in the framework of the proposed algorithm, the penalties to over-temperature and LIB degradation are embedded to improve the management quality in terms of the thermal safety enforcement and overall driving cost reduction. The proposed strategy is tested under different road missions to validate its superiority over state-of-the-art techniques in terms of training efficiency and optimization performance.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Vehicular TechnologyArticle . 2020 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tvt.2020.3025627&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2014Publisher:IEEE Authors: S. Kiakojoori; Khashayar Khorasani;In this paper, fault prognosis of aircraft jet engines are considered using computationally intelligent-based methodologies to ensure flight safety and performance. Two different dynamic neural networks namely, the nonlinear autoregressive neural networks with exogenous input (NARX) and the Elman neural networks are developed and designed for this purpose. The proposed dynamic neural networks are designed to capture the dynamics of two main degradations in the jet engine, namely the compressor fouling and the turbine erosion. The health status and condition of the engine is then predicted subject to occurrence of these deteriorations. In both proposed approaches, two scenarios are considered. For each scenario, several neural networks are trained and their performance in predicting multi-flights ahead turbine output temperature are evaluated. Finally, the most suitable neural network for prediction is selected by using the normalized Bayesian information criterion model selection. Simulation results presented demonstrate and illustrate the effective performance of our proposed neural network-based prediction and prognosis strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ijcnn.2014.6889694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ijcnn.2014.6889694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rehan Sadiq; Kasun Hewage; Piyaruwan Perera;Abstract Recharging infrastructure (RI) deployment plays a vital role in improving the public recharging availability for transport electrification. Decarbonizing transportation using low-emission electricity requires massive RI network. Even though the consumers are reluctant to purchase electric vehicles (EVs) until RIs are sufficiently placed, the investors are not willing to invest in RIs due to recharging demand uncertainties. Therefore, a scientific planning framework is needed to ensure the sustainable deployment of EV-RIs in complex networks. In this study, a lifecycle thinking-based multi-period infrastructure-planning framework is proposed to develop sustainable public EV-RIs in an urban context. This framework consists of a temporal model to find the dynamic EV-RI demands, a stochastic model to obtain travel distances, and a multi-objective optimization model to select the best desirable capacities and locations for potential EV-RIs. A case study of a typical medium-scale municipality in Canada was assessed using the proposed framework and validated using conventional infrastructure planning scenarios. The geo-processing data, regional travel behaviors, and recharging characteristics were used as model inputs. The results of the case study showed that the proposed framework can be used to estimate multi-period public recharging demands, minimize lifecycle costs, maximize service coverage and infrastructure utilization, and ensure reasonable paybacks compared to conventional planning approaches. Moreover, this framework can be used to compare different investment assistances, which are required in the early stages of the RI deployment process to encourage investors. Furthermore, government and private institutions can use this framework to identify recharging demands, permitting, and developing RIs in the long-run.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.119559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1993Publisher:Elsevier BV Authors: Vishwa Bhusan Amatya; John Robinson; M. Chandrashekar;Abstract The residential sector accounts for most of energy-consumption in developing countries in the form of traditional energy. The use of commercial energy is nominal and confined mostly to urban areas where fuelwood is already monetized. A model, based on an end-use/process analysis approach, is developed on a spreadsheet, which is capable of simulating scenarios to address issues of increasing traditional energy-demand caused by population growth, sustainable supply capacity of the existing energy resources, potential for development of new and renewable energy resources, technology. This paper is divided into two parts: general energy issues and the modelling approach, and the application of this approach to Nepal in the context of fuelwood-supply sustainability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90069-p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0360-5442(93)90069-p&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:figshare Ter-Mikaelian, Michael T.; Gonsamo, Alemu; Chen, Jing M.; Mo, Gang; Chen, Jiaxin;Additional file 1. Histotical and projected C stocks and fluxes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14992766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.14992766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Sommerfeld, Markus;These data sets provide the WRF [1] calculated wind data for Pritzwalk (onshore) and FINO3 (offshore) as Python dictionaries. Additionally, the files contain k-means cluster objects derived from these profiles. These data sets were used for power assessment and design exploration of Airborne Wind Energy Systems using the awebox [2] optimization toolbox. WRF setups are described in detail and used in publication [3,4,5]. Wind data are interpolated to fixed heights of: [10, 28, 50, 70, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 1000, 1200] meters above ground. Onshore wind data: Location lat: 53° 10.78' N; long: 12° 11.35' E Time: 1 September 2015 - 31 August 2016 Timestep: 10 min Offshore wind data: Location lat: 55° 11.7' N, long: 7° 9.5' E Time: 1 September 2013 - 31 August 2014 Timestep: 10 min The clusters are derived from both horizontal wind velocity components using the scikit-learn’s k-means clustering algorithm [6]. For our purposes, wind vectors were rotated such that the main wind speed always points in the same direction (u_main,u_deviation). [1]: Weather Research and Forecasting Model [2]: awebox [3]: Improving mesoscale wind speed forecasts using lidar-based observation nudging for airborne wind energy systems [4]: Offshore and onshore ground-generation airborne wind energy power curve characterization [5]:Ground-generation airborne wind energy design space exploration [6]: sklearn.cluster.KMeans
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 31 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4292506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 04 Nov 2021Publisher:Harvard Dataverse Authors: Stan, Kayla; Sanchez-Azofeifa, Arturo; Watt, Graham A.;doi: 10.7910/dvn/j0b3qd
Select monthly climate data for provinces in Canada. Monthly data includes mean temperature, maximum temperatures, minimum temperature, snow, precipitation, HDD, CDD, and Trade.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/j0b3qd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/j0b3qd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 08 Aug 2023Publisher:Dryad Authors: Harris, Lorna; Olefeldt, David;Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralisation and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 abd 4.5 m deep) along four chronosequences, from elevated permafrost plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 +/- 7.2 kg C m-2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 +/- 2.5 kg C m-2. We estimate ~19% (+/- 5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 +/- 7.9 kg C m-2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralisation of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.47d7wm3kk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.47d7wm3kk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Authors: Milovanoff, Alexandre; Posen, I. Daniel; MacLean, Heather L.;This repository contains the raw data of the inputs and results presented in the paper "Electrification of light-duty vehicle fleet alone will not meet mitigation targets" published in Nature Climate Change (2020) by Alexandre Milovanoff, I. Daniel Posen, and Heather L. MacLean (Department of Civil & Mineral Engineering, University of Toronto).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 43visibility views 43 download downloads 5 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3961829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Nov 2017Publisher:Dryad Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; Power, Michael;doi: 10.5061/dryad.q659t
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu