Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
845 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • CA
  • BG
  • University of Alberta

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kravchinsky, Vadim A.; Zhang, Rui; Borowiecki, Ryan; Tarasov, Pavel E.; +4 Authors

    A lack of adequate high resolution climate proxy records for the Last Glacial Maximum (LGM) has prevented the extrapolation of climate–solar linkages on centennial time scales prior of the Holocene. Therefore, it is still unknown whether centennial climate variations of the last ten thousand years convey a universal climate change or merely represent a characteristic of the Holocene. Recently published high resolution climate proxy records for the LGM allowed us to extrapolate climate–solar linkages on centennial time scales ahead of the Holocene. Here we present the analysis of a high resolution pollen concentration record from Lake Kotokel in southern Siberia, Russia, during the LGM. The record reflects the dynamics of vegetation zones and temperature change with a resolution of ~ 40 years in the continental climate of north-eastern Asia. We demonstrate that our pollen concentration record, the oxygen isotope δ18O record from the Greenland ice core project NGRIP (NorthGRIP), the dust-fall contributions in Lake Qinghai, China, grain size in the Gulang and Jingyuan loess deposits, China, and the composite oxygen isotope δ18O record from the Alpine cave system 7H reveal cooler to warmer climate fluctuations between ~ 20.6 and 26 ka. Such fluctuations correspond to the ~ 1000-yr, 500-600-yr and 210-250-yr cycles possibly linked to the solar activity variations and recognized in high resolution Holocene proxies all over the world. We further show that climate fluctuations in the LGM and Holocene are spectrally similar suggesting that linkages between climate proxies and solar activity at the centennial time scale in the Holocene can be extended to the LGM. {"references": ["Vadim A. Kravchinsky, Rui Zhang, Ryan Borowiecki, Pavel E. Tarasov, Mirko van der Baan, Taslima Anwar, Avto Goguitchaichvili, Stefanie M\u00fcller, 2021. Centennial scale climate oscillations from southern Siberia in the Last Glacial Maximum. Quaternary Science Reviews, in press."]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stolar, Jessica; Stralberg, Diana; Naujokaitis-Lewis, Ilona; Nielsen, Scott E.; +1 Authors

    Climate-informed conservation priorities in British Columbia (Version 1.0) Territorial acknowledgement: We respectfully acknowledge that we live and work across diverse unceded territories and treaty lands and pay our respects to the First Nations, Inuit and Métis ancestors of these places. We honour our connections to these lands and waters and reaffirm our relationships with one another. Suggested citation: Stolar, J., D. Stralberg, I. Naujokaitis-Lewis, S.E. Nielsen, and G. Kehm. 2023. Spatial priorities for climate-change refugia and connectivity for British Columbia (Version 1.0). Place of publication: University of Alberta, Edmonton, Canada. doi: 10.5281/zenodo.8333303 Corresponding author: stolar@ualberta.ca Summary: The purpose of this project is to identify spatial locations of (a) vulnerabilities within British Columbia’s current network of protected areas and (b) priorities for conservation and management of natural landscapes within British Columbia under a range of future climate-change scenarios. This involved adaptation and implementation of existing continental- and provincial-scale frameworks for identifying areas that have potential to serve as refugia from climate change or corridors for species migration. Outcomes of this work include the provision of practical guidance for protected areas network design and vulnerabilities identification under climate change, with application to other regions and jurisdictions. Project results, in the form of multiple spatial prioritization scenarios, may be used to evaluate the resilience of the existing protected area network and other conservation designations to better understand the risks to British Columbia’s biodiversity in our changing climate. Description: These raster layers represent different scenarios of Zonation rankings of conservation priorities for climate resilience and connectivity between current and 2080s conditions for a provincial-scale analysis. Input conservation features included metrics of macrorefugia (forward and backward climate velocity (km/year), overlapping future and current habitat suitability for ~900 rare species in BC), microrefugia (presence of old growth ecosystems, drought refugia, glaciers/cool slopes/wetlands, and geodiversity), and connectivity. Please see details in the accompanying report. File nomenclature: .zip folder (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.zip): Contains the files listed below. Macrorefugia (2080s_macrorefugia.tif): Scenarios for each taxonomic group (equal weightings for all species) (Core-area Zonation Function) Climate-type velocity + species scenarios from above (Core-area Zonation; equal weightings) Microrefugia (microrefugia.tif): Scenario with old growth forest habitat, landscape geodiversity, wetlands/cool slopes/glaciers, drought refugia (Core-area Zonation; equal weightings) Overall scenario (2080s_macro_micro_connectivity.tif): Inputs from above (with equal weightings) + connectivity metrics (each weighted at 0.1) (Additive Benefit Function Zonation) Conservation priorities (Conservation_priorities_2080s.tif): Overall scenario from above extracted to regions of low human footprint. Restoration priorities (Restoration_priorities_2080s.tif): Overall scenario from above extracted to regions of high human footprint. Accompanying report (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.pdf): Documentation of rationale, methods and interpretation. READ_ME file (READ_ME_PLEASE.txt): Metadata. Legend interpretation: Ranked Zonation priorities increase from 0 (lowest) to 1 (highest). Raster information: Columns and Rows: 1597, 1368 Number of Bands: 1 Cell Size (X, Y): 1000, 1000 Format: TIFF Pixel Type: floating point Compression: LZW Spatial reference: XY Coordinate System: NAD_1983_Albers Linear Unit: Meter (1.000000) Angular Unit: Degree (0.0174532925199433) false_easting: 1000000 false_northing: 0 central_meridian: -126 standard_parallel_1: 50 standard_parallel_2: 58.5 latitude_of_origin: 45 Datum: D_North_American_1983 Extent: West -139.061502 East -110.430823 North 60.605550 South 47.680823 Disclaimer: The University of Alberta (UofA) is furnishing this deliverable "as is". UofA does not provide any warranty of the contents of the deliverable whatsoever, whether express, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the deliverable will be error-free. Funding: We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation. We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stan, Kayla; Sanchez-Azofeifa, Arturo; Watt, Graham A.;

    Select monthly climate data for provinces in Canada. Monthly data includes mean temperature, maximum temperatures, minimum temperature, snow, precipitation, HDD, CDD, and Trade.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harvard Dataverse
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Harvard Dataverse
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Harris, Lorna; Olefeldt, David;

    Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralisation and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 abd 4.5 m deep) along four chronosequences, from elevated permafrost plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 +/- 7.2 kg C m-2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 +/- 2.5 kg C m-2. We estimate ~19% (+/- 5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 +/- 7.9 kg C m-2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralisation of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thompson, Megan J.; Dobson, F. Stephen; Coltman, David W.; Murie, Jan O.; +2 Authors

    # Sexes in sync: phenotypic plasticity, sexual selection, and phenological synchrony between the sexes in a wild hibernator By Megan J. Thompson, F. Stephen Dobson, David W. Coltman, Jan O. Murie, Shirley Raveh, Jeffrey E. Lane ## Description of the data and file structure File list * "KiteField\_PhysEmerg\_SexesInSync.csv" * "MeadowB\_BehavEmerg\_SexesInSync.csv" * "MeadowB\_Territoriality\_SexesInSync.csv" * "MeadowB\_Selection\_SexesInSync.csv" * "KiteField\_PhysEmerg\_SexesInSync.csv": Data from Kite Field population includes individual phenological dates for physiological emergence from torpor and behavioural emergence from hibernation in relation to annual snow melt dates. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ AGE : Age of individual when observed (years) $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ PHYS.DT : Date of physiological emergence from torpor in Julian days (days since Jan 1) $ SEX : M = Male, F = Female $ snow : Date of annual snow melt in Julian days (days since Jan 1) $ xbarsnow : Between snow melt effect (average date of snowmelt an individual experienced over their lifetime) $ xminusxbarsnow: Within snow melt effect (annual date of snowmelt minus the average snow melt experienced by an individual over their lifetime) $ repeats : Whether an individual had more than one observation where R = repeated observations, N = No repeated observations "MeadowB\_BehavEmerg\_SexesInSync.csv": Data from Meadow B population includes individual phenological dates for behavioural emergence from hibernation in relation to annual snow melt dates. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ AGE : Age of individual when observed (years) $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ SEX : M = Male, F = Female $ snow : Date of annual snow melt in Julian days (days since Jan 1) $ xbarsnow : Between snow melt effect (average date of snowmelt an individual experienced over their lifetime) $ xminusxbarsnow: Within snow melt effect (annual date of snowmelt minus the average snow melt experienced by an individual over their lifetime) $ repeats : Whether an individual had more than one observation where R = repeated observations, N = No repeated observations "MeadowB\_Territoriality\_SexesInSync.csv": Data from Meadow B population includes phenological dates for behavioural emergence from hibernation in relation to the average annual female emergence dates and whether an individual was territorial or not. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ AvgFemEmg : Average female annual behavioural emergence date in Julian days (days since Jan 1) $ RelFemEMG : Relative behavioural emergence date to the average annual female emergence date (I.e., EMG.DT - AvgFemEmg) $ Territorial: 1 = Secured breeding territory, 0 = Did not secure breeding territory $ AGE : Age of individual between 2 - 9 years old "MeadowB\_Selection\_SexesInSync.csv": Data from Meadow B population includes phenological dates for behavioural emergence from hibernation in relation to the average annual female emergence dates and reproductive success. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ AGE : Age of individual when observed (years) $ SEX : M = Male $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ AvgFemEMG : Average female annual behavioural emergence date in Julian days (days since Jan 1) $ RelFemEMG : Relative behavioural emergence date to the average annual female emergence date (I.e., EMG.DT - AvgFemEmg) $ RS\_offspring: Reproductive success measured as the number of offspring weaned $ RelRS : Relative annual reproductive success ## Sharing/Access information Data was derived from the ongoing long-term data collection efforts by Jeff Lane and Stephen Dobson. For sharing and access permission please contact either data owners. ### Code/Software Data compiled and analysed using R script: "Analyses\_SexesInSync.R" with free open software R (https://www.r-project.org/) Desynchrony of phenological responses to climate change is a major concern in ecological communities. Potential uncoupling between one of the most fundamental divisions within populations, males and females, has not been well studied. To address this gap, we examined sex-specific plasticity in hibernation phenology in two populations of Columbian ground squirrels (Urocitellus columbianus). We find that both sexes display similar phenological plasticity to spring snowmelt dates in their timing of torpor termination and behavioural emergence from hibernation. As a result of this plasticity, the degree of protandry (i.e., males’ emergences from hibernation preceding those of females) did not change significantly over the 27-year study. Earlier male behavioural emergence, relative to females, improved the likelihood of securing a breeding territory and increased annual reproductive success. Sexual selection favouring earlier male emergence from hibernation may maintain protandry in this population but did not contribute to further advances in male phenology. Older males also tended to emerge earlier and secure territories, and so it is unclear whether selection acts indirectly through age. Together, our results provide evidence that the sexes should remain synchronised, at least in response to the weather variation investigated here, and further support the role of sexual selection in the evolution of protandry in sexually reproducing organisms. Datasets provided in .csv format and code to replicate analyses are in R script format (https://www.r-project.org/). Long-term dataset monitoring populations of Columbian ground squirrels in Alberta, Canada. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Huayun Li; Yangfan Wu; Anxiang Zhou; Feng Lu; +3 Authors

    In recent years, steel fiber-reinforced concrete (SFRC) single-layer linings have been used in tunnel engineering. Compared to plain concrete single-layer linings, SFRC single-layer linings demonstrate enhanced bearing capacity, durability, and sustainability. Existing studies primarily focused on the mechanical properties of SFRC; however, limited investigations have been conducted on the cracking pattern of SFRC linings. This study uses laboratory tests to examine the influence of steel fiber content and aspect ratio on the mechanical properties of concrete, such as compressive strength and elastic modulus. After the recommended content and aspect ratio of steel fiber are proposed through tests, the cracking pattern and safety performance of plain concrete and SFRC linings under surrounding rock pressure are studied using a similar model test. The test results indicate that the recommended steel fiber volume fraction and aspect ratio for CF35 SFRC are 0.58% and 70, respectively. Due to the effect of loose load, cracks initially develop on the inside of arch crowns in both plain concrete and SFRC single-layer linings. Subsequently, new cracks appear on the inside of the lining floor and the outside of the two wall feet. Numerous narrow cracks with rugged and winding expansion paths can be found on SFRC single-layer linings. Conversely, plain concrete single-layer linings exhibit fewer cracks with larger widths along a straighter path. The initial cracking load of a single-layer lining made of plain concrete is 0.027 MPa, whereas for a single-layer lining made of SFRC, it is 0.04 MPa. This indicates that SFRC can effectively enhance the initial cracking load of lining structures. In the event of damage to the lining, the most critical area for the plain concrete single-layer lining is at the two wall feet, where the minimum safety factor is 1.66. However, for the SFRC lining in the same location, the safety factor is 2.7, resulting in a 62.7% increase in safety.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Zhiwei Ma; Luis Coimbra; Juliana Y. Leung;

    Summary The steam alternating solvent (SAS) process involves multiple cycles of steam and solvent (e.g., propane) injected into a horizontal well pair to produce heavy oil. These solvent-based methods entail a smaller environmental footprint with reduced water usage and greenhouse gas emissions. However, the lack of understanding regarding the influences of reservoir heterogeneities, such as shale barriers, remains a significant risk for field-scale predictions. Additionally, the proper design of the process is challenging because of the uncertain heterogeneity distribution and optimization of multiple conflicting objectives. This work develops a novel hybrid multiobjective optimization (MOO) workflow to search a set of Pareto-optimal operational parameters for the SAS process in heterogeneous reservoirs. A set of synthetic homogeneous 2D is constructed using data representative of the Cold Lake reservoir. Next, multiple heterogeneous models (realizations) are built to incorporate complex shale heterogeneities. The resultant set of SAS heterogeneous models is subjected to flow simulation. A detailed sensitivity analysis examines the impacts of shale barriers on SAS production. It is used to formulate a set of operational/decision parameters (i.e., solvent concentration and duration of solvent injection cycles) and the objective functions (cumulative steam/oil ratio and propane retention). The nondominated sorting genetic algorithm II (NSGA-II) is applied to search for the optimal decision parameters. Different formulations of an aggregated objective function, including average, minimum, and maximum, are used to capture the variability in objectives among the multiple realizations of the reservoir model. Finally, several proxy models are included in the hybrid workflow to evaluate the defined objective functions to reduce the computational cost. Results of the optimization workflow reveal that both the solvent concentration and duration of the solvent injection in the early cycles have significant impacts. It is recommended to inject solvent for longer periods during both the early and late SAS stages. It is also noted that cases with higher objective function values are observed with more heterogeneities. This work offers promising potential to derisk solvent-based technologies for heavy oil recovery by facilitating more robust field-scale decision-making.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhengfeng An; Edward W. Bork; Xinyi Duan; Cole D. Gross; +2 Authors

    AbstractInformation about regional‐level carbon (C) stocks in agroforestry systems (AFS), as well as the annual loss of agroforests and associated C stocks, is scarce, limiting our capacity for increasing C sequestration through establishing, retaining, and enhancing these systems. This study quantified regional‐level C stocks and the associated incremental economic value in the forest land‐use component of three common AFS (hedgerows, shelterbelts, and silvopastures), estimated the annual loss of hedgerow and silvopasture forests and the associated C, and assessed the potential to enhance C storage through the expansion of shelterbelts in central Alberta, Canada, using publicly available satellite imagery, previously collected field data and the Google Earth Engine platform. Results showed that forests in the three AFS stored 699.9 million tons (Mt) C across 9.5 million hectares (Mha) of land in central Alberta and were valued at $102.7 billion based on the 2021 Canadian C tax rate of $40 t−1 CO2‐equivalent. Silvopasture forests in the studied region had the highest C stocks, which were 14.2 and 67.2 times that found in hedgerow and shelterbelt forests, respectively. Between 2001 and 2020, forests in hedgerows and silvopastures declined at rates of 468.1 and 1957.1 ha year−1, respectively, leading to an 8.4 Mt decline in total C storage over the 20 years. However, there is potential to establish new shelterbelts at many road/field margins, which could increase C stocks by 2.3 times the current C stocks in shelterbelt forests. These results highlight the importance of retaining existing and establishing new AFS for increasing C sequestration, emphasizing the impact of agroforest loss on reducing C storage within agroecosystems. The development of policies that assist or reward landowners for providing the ecosystem service of C storage by retaining, establishing, and enhancing agroforests as part of existing agroecosystem management should be encouraged for mitigating climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Carmen Faso; Dayana E. Salas-Leiva; Joel B. Dacks; Joel B. Dacks; +6 Authors

    ABSTRACTComparing a parasitic lineage to its free-living relatives is a powerful way to understand how the evolutionary transition to parasitism occurred.Giardia intestinalis(Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role inGiardia’s pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined inG. intestinalisand roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species.We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed inGiardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement betweenGiardiastrains. Microscopy-based investigations of key components of ESCRT machinery such asGiVPS36andGiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the Endoplasmic Reticulum, and for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, includingGiardia, and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. Our findings show that ESCRT machinery inG. intestinalisis far more varied and complete than previously thought, and associating to multiple cellular locations and presenting changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://boris.unibe....arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://boris.unibe.ch/159060/...
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Conference object
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.48350/15...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://boris.unibe....arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://boris.unibe.ch/159060/...
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Conference object
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5167/uzh...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.48350/15...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jacek Majorowicz; Stephen E. Grasby;

    We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
845 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kravchinsky, Vadim A.; Zhang, Rui; Borowiecki, Ryan; Tarasov, Pavel E.; +4 Authors

    A lack of adequate high resolution climate proxy records for the Last Glacial Maximum (LGM) has prevented the extrapolation of climate–solar linkages on centennial time scales prior of the Holocene. Therefore, it is still unknown whether centennial climate variations of the last ten thousand years convey a universal climate change or merely represent a characteristic of the Holocene. Recently published high resolution climate proxy records for the LGM allowed us to extrapolate climate–solar linkages on centennial time scales ahead of the Holocene. Here we present the analysis of a high resolution pollen concentration record from Lake Kotokel in southern Siberia, Russia, during the LGM. The record reflects the dynamics of vegetation zones and temperature change with a resolution of ~ 40 years in the continental climate of north-eastern Asia. We demonstrate that our pollen concentration record, the oxygen isotope δ18O record from the Greenland ice core project NGRIP (NorthGRIP), the dust-fall contributions in Lake Qinghai, China, grain size in the Gulang and Jingyuan loess deposits, China, and the composite oxygen isotope δ18O record from the Alpine cave system 7H reveal cooler to warmer climate fluctuations between ~ 20.6 and 26 ka. Such fluctuations correspond to the ~ 1000-yr, 500-600-yr and 210-250-yr cycles possibly linked to the solar activity variations and recognized in high resolution Holocene proxies all over the world. We further show that climate fluctuations in the LGM and Holocene are spectrally similar suggesting that linkages between climate proxies and solar activity at the centennial time scale in the Holocene can be extended to the LGM. {"references": ["Vadim A. Kravchinsky, Rui Zhang, Ryan Borowiecki, Pavel E. Tarasov, Mirko van der Baan, Taslima Anwar, Avto Goguitchaichvili, Stefanie M\u00fcller, 2021. Centennial scale climate oscillations from southern Siberia in the Last Glacial Maximum. Quaternary Science Reviews, in press."]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stolar, Jessica; Stralberg, Diana; Naujokaitis-Lewis, Ilona; Nielsen, Scott E.; +1 Authors

    Climate-informed conservation priorities in British Columbia (Version 1.0) Territorial acknowledgement: We respectfully acknowledge that we live and work across diverse unceded territories and treaty lands and pay our respects to the First Nations, Inuit and Métis ancestors of these places. We honour our connections to these lands and waters and reaffirm our relationships with one another. Suggested citation: Stolar, J., D. Stralberg, I. Naujokaitis-Lewis, S.E. Nielsen, and G. Kehm. 2023. Spatial priorities for climate-change refugia and connectivity for British Columbia (Version 1.0). Place of publication: University of Alberta, Edmonton, Canada. doi: 10.5281/zenodo.8333303 Corresponding author: stolar@ualberta.ca Summary: The purpose of this project is to identify spatial locations of (a) vulnerabilities within British Columbia’s current network of protected areas and (b) priorities for conservation and management of natural landscapes within British Columbia under a range of future climate-change scenarios. This involved adaptation and implementation of existing continental- and provincial-scale frameworks for identifying areas that have potential to serve as refugia from climate change or corridors for species migration. Outcomes of this work include the provision of practical guidance for protected areas network design and vulnerabilities identification under climate change, with application to other regions and jurisdictions. Project results, in the form of multiple spatial prioritization scenarios, may be used to evaluate the resilience of the existing protected area network and other conservation designations to better understand the risks to British Columbia’s biodiversity in our changing climate. Description: These raster layers represent different scenarios of Zonation rankings of conservation priorities for climate resilience and connectivity between current and 2080s conditions for a provincial-scale analysis. Input conservation features included metrics of macrorefugia (forward and backward climate velocity (km/year), overlapping future and current habitat suitability for ~900 rare species in BC), microrefugia (presence of old growth ecosystems, drought refugia, glaciers/cool slopes/wetlands, and geodiversity), and connectivity. Please see details in the accompanying report. File nomenclature: .zip folder (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.zip): Contains the files listed below. Macrorefugia (2080s_macrorefugia.tif): Scenarios for each taxonomic group (equal weightings for all species) (Core-area Zonation Function) Climate-type velocity + species scenarios from above (Core-area Zonation; equal weightings) Microrefugia (microrefugia.tif): Scenario with old growth forest habitat, landscape geodiversity, wetlands/cool slopes/glaciers, drought refugia (Core-area Zonation; equal weightings) Overall scenario (2080s_macro_micro_connectivity.tif): Inputs from above (with equal weightings) + connectivity metrics (each weighted at 0.1) (Additive Benefit Function Zonation) Conservation priorities (Conservation_priorities_2080s.tif): Overall scenario from above extracted to regions of low human footprint. Restoration priorities (Restoration_priorities_2080s.tif): Overall scenario from above extracted to regions of high human footprint. Accompanying report (Stolar_et_al_2023_CiCP_Zenodo_upload_Version_1.0.pdf): Documentation of rationale, methods and interpretation. READ_ME file (READ_ME_PLEASE.txt): Metadata. Legend interpretation: Ranked Zonation priorities increase from 0 (lowest) to 1 (highest). Raster information: Columns and Rows: 1597, 1368 Number of Bands: 1 Cell Size (X, Y): 1000, 1000 Format: TIFF Pixel Type: floating point Compression: LZW Spatial reference: XY Coordinate System: NAD_1983_Albers Linear Unit: Meter (1.000000) Angular Unit: Degree (0.0174532925199433) false_easting: 1000000 false_northing: 0 central_meridian: -126 standard_parallel_1: 50 standard_parallel_2: 58.5 latitude_of_origin: 45 Datum: D_North_American_1983 Extent: West -139.061502 East -110.430823 North 60.605550 South 47.680823 Disclaimer: The University of Alberta (UofA) is furnishing this deliverable "as is". UofA does not provide any warranty of the contents of the deliverable whatsoever, whether express, implied, or statutory, including, but not limited to, any warranty of merchantability or fitness for a particular purpose or any warranty that the contents of the deliverable will be error-free. Funding: We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation. We gratefully acknowledge the financial support of Environment and Climate Change Canada, the Province of British Columbia through the Ministry of Water, Land and Resource Stewardship) and the Ministry of Environment and Climate Change Strategy, the BC Parks Living Lab for Climate Change and Conservation, and the Wilburforce Foundation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stan, Kayla; Sanchez-Azofeifa, Arturo; Watt, Graham A.;

    Select monthly climate data for provinces in Canada. Monthly data includes mean temperature, maximum temperatures, minimum temperature, snow, precipitation, HDD, CDD, and Trade.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harvard Dataverse
    Dataset . 2021
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Harvard Dataverse
      Dataset . 2021
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Harris, Lorna; Olefeldt, David;

    Rapid, ongoing permafrost thaw of peatlands in the discontinuous permafrost zone is exposing a globally significant store of soil carbon (C) to microbial processes. Mineralisation and release of this peat C to the atmosphere as greenhouse gases is a potentially important feedback to climate change. Here we investigated the effects of permafrost thaw on peat C at a peatland complex in western Canada. We collected 15 complete peat cores (between 2.7 abd 4.5 m deep) along four chronosequences, from elevated permafrost plateaus to saturated thermokarst bogs that thawed up to 600 years ago. The peat cores were analysed for peat C storage and peat quality, as indicated by decomposition proxies (FTIR and C/N ratios) and potential decomposability using a 200-day aerobic incubation. Our results suggest net C loss following thaw, with average total peat C stocks decreasing by ~19.3 +/- 7.2 kg C m-2 over <600 years (~13% loss). Average post-thaw accumulation of new peat at the surface over the same period was ~13.1 +/- 2.5 kg C m-2. We estimate ~19% (+/- 5.8%) of deep peat (>40 cm below surface) C is lost following thaw (average 26 +/- 7.9 kg C m-2 over <600 years). Our FTIR analysis shows peat below the thaw transition in thermokarst bogs is slightly more decomposed than peat of a similar type and age in permafrost plateaus, but we found no significant changes to the quality or lability of deeper peat across the chronosequences. Our incubation results also showed no increase in C mineralisation of deep peat across the chronosequences. While these limited changes in peat quality in deeper peat following permafrost thaw highlight uncertainty in the exact mechanisms and processes for C loss, our analysis of peat C stocks shows large C losses following permafrost thaw in peatlands in western Canada.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thompson, Megan J.; Dobson, F. Stephen; Coltman, David W.; Murie, Jan O.; +2 Authors

    # Sexes in sync: phenotypic plasticity, sexual selection, and phenological synchrony between the sexes in a wild hibernator By Megan J. Thompson, F. Stephen Dobson, David W. Coltman, Jan O. Murie, Shirley Raveh, Jeffrey E. Lane ## Description of the data and file structure File list * "KiteField\_PhysEmerg\_SexesInSync.csv" * "MeadowB\_BehavEmerg\_SexesInSync.csv" * "MeadowB\_Territoriality\_SexesInSync.csv" * "MeadowB\_Selection\_SexesInSync.csv" * "KiteField\_PhysEmerg\_SexesInSync.csv": Data from Kite Field population includes individual phenological dates for physiological emergence from torpor and behavioural emergence from hibernation in relation to annual snow melt dates. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ AGE : Age of individual when observed (years) $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ PHYS.DT : Date of physiological emergence from torpor in Julian days (days since Jan 1) $ SEX : M = Male, F = Female $ snow : Date of annual snow melt in Julian days (days since Jan 1) $ xbarsnow : Between snow melt effect (average date of snowmelt an individual experienced over their lifetime) $ xminusxbarsnow: Within snow melt effect (annual date of snowmelt minus the average snow melt experienced by an individual over their lifetime) $ repeats : Whether an individual had more than one observation where R = repeated observations, N = No repeated observations "MeadowB\_BehavEmerg\_SexesInSync.csv": Data from Meadow B population includes individual phenological dates for behavioural emergence from hibernation in relation to annual snow melt dates. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ AGE : Age of individual when observed (years) $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ SEX : M = Male, F = Female $ snow : Date of annual snow melt in Julian days (days since Jan 1) $ xbarsnow : Between snow melt effect (average date of snowmelt an individual experienced over their lifetime) $ xminusxbarsnow: Within snow melt effect (annual date of snowmelt minus the average snow melt experienced by an individual over their lifetime) $ repeats : Whether an individual had more than one observation where R = repeated observations, N = No repeated observations "MeadowB\_Territoriality\_SexesInSync.csv": Data from Meadow B population includes phenological dates for behavioural emergence from hibernation in relation to the average annual female emergence dates and whether an individual was territorial or not. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ AvgFemEmg : Average female annual behavioural emergence date in Julian days (days since Jan 1) $ RelFemEMG : Relative behavioural emergence date to the average annual female emergence date (I.e., EMG.DT - AvgFemEmg) $ Territorial: 1 = Secured breeding territory, 0 = Did not secure breeding territory $ AGE : Age of individual between 2 - 9 years old "MeadowB\_Selection\_SexesInSync.csv": Data from Meadow B population includes phenological dates for behavioural emergence from hibernation in relation to the average annual female emergence dates and reproductive success. Column: Description $ YEAR : Year of study $ EGO.ID : Individual ID $ AGE : Age of individual when observed (years) $ SEX : M = Male $ EMG.DT : Date of behavioural emergence from hibernation in Julian days (days since Jan 1) $ AvgFemEMG : Average female annual behavioural emergence date in Julian days (days since Jan 1) $ RelFemEMG : Relative behavioural emergence date to the average annual female emergence date (I.e., EMG.DT - AvgFemEmg) $ RS\_offspring: Reproductive success measured as the number of offspring weaned $ RelRS : Relative annual reproductive success ## Sharing/Access information Data was derived from the ongoing long-term data collection efforts by Jeff Lane and Stephen Dobson. For sharing and access permission please contact either data owners. ### Code/Software Data compiled and analysed using R script: "Analyses\_SexesInSync.R" with free open software R (https://www.r-project.org/) Desynchrony of phenological responses to climate change is a major concern in ecological communities. Potential uncoupling between one of the most fundamental divisions within populations, males and females, has not been well studied. To address this gap, we examined sex-specific plasticity in hibernation phenology in two populations of Columbian ground squirrels (Urocitellus columbianus). We find that both sexes display similar phenological plasticity to spring snowmelt dates in their timing of torpor termination and behavioural emergence from hibernation. As a result of this plasticity, the degree of protandry (i.e., males’ emergences from hibernation preceding those of females) did not change significantly over the 27-year study. Earlier male behavioural emergence, relative to females, improved the likelihood of securing a breeding territory and increased annual reproductive success. Sexual selection favouring earlier male emergence from hibernation may maintain protandry in this population but did not contribute to further advances in male phenology. Older males also tended to emerge earlier and secure territories, and so it is unclear whether selection acts indirectly through age. Together, our results provide evidence that the sexes should remain synchronised, at least in response to the weather variation investigated here, and further support the role of sexual selection in the evolution of protandry in sexually reproducing organisms. Datasets provided in .csv format and code to replicate analyses are in R script format (https://www.r-project.org/). Long-term dataset monitoring populations of Columbian ground squirrels in Alberta, Canada. 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2023
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2023
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2023
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2023
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Huayun Li; Yangfan Wu; Anxiang Zhou; Feng Lu; +3 Authors

    In recent years, steel fiber-reinforced concrete (SFRC) single-layer linings have been used in tunnel engineering. Compared to plain concrete single-layer linings, SFRC single-layer linings demonstrate enhanced bearing capacity, durability, and sustainability. Existing studies primarily focused on the mechanical properties of SFRC; however, limited investigations have been conducted on the cracking pattern of SFRC linings. This study uses laboratory tests to examine the influence of steel fiber content and aspect ratio on the mechanical properties of concrete, such as compressive strength and elastic modulus. After the recommended content and aspect ratio of steel fiber are proposed through tests, the cracking pattern and safety performance of plain concrete and SFRC linings under surrounding rock pressure are studied using a similar model test. The test results indicate that the recommended steel fiber volume fraction and aspect ratio for CF35 SFRC are 0.58% and 70, respectively. Due to the effect of loose load, cracks initially develop on the inside of arch crowns in both plain concrete and SFRC single-layer linings. Subsequently, new cracks appear on the inside of the lining floor and the outside of the two wall feet. Numerous narrow cracks with rugged and winding expansion paths can be found on SFRC single-layer linings. Conversely, plain concrete single-layer linings exhibit fewer cracks with larger widths along a straighter path. The initial cracking load of a single-layer lining made of plain concrete is 0.027 MPa, whereas for a single-layer lining made of SFRC, it is 0.04 MPa. This indicates that SFRC can effectively enhance the initial cracking load of lining structures. In the event of damage to the lining, the most critical area for the plain concrete single-layer lining is at the two wall feet, where the minimum safety factor is 1.66. However, for the SFRC lining in the same location, the safety factor is 2.7, resulting in a 62.7% increase in safety.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Zhiwei Ma; Luis Coimbra; Juliana Y. Leung;

    Summary The steam alternating solvent (SAS) process involves multiple cycles of steam and solvent (e.g., propane) injected into a horizontal well pair to produce heavy oil. These solvent-based methods entail a smaller environmental footprint with reduced water usage and greenhouse gas emissions. However, the lack of understanding regarding the influences of reservoir heterogeneities, such as shale barriers, remains a significant risk for field-scale predictions. Additionally, the proper design of the process is challenging because of the uncertain heterogeneity distribution and optimization of multiple conflicting objectives. This work develops a novel hybrid multiobjective optimization (MOO) workflow to search a set of Pareto-optimal operational parameters for the SAS process in heterogeneous reservoirs. A set of synthetic homogeneous 2D is constructed using data representative of the Cold Lake reservoir. Next, multiple heterogeneous models (realizations) are built to incorporate complex shale heterogeneities. The resultant set of SAS heterogeneous models is subjected to flow simulation. A detailed sensitivity analysis examines the impacts of shale barriers on SAS production. It is used to formulate a set of operational/decision parameters (i.e., solvent concentration and duration of solvent injection cycles) and the objective functions (cumulative steam/oil ratio and propane retention). The nondominated sorting genetic algorithm II (NSGA-II) is applied to search for the optimal decision parameters. Different formulations of an aggregated objective function, including average, minimum, and maximum, are used to capture the variability in objectives among the multiple realizations of the reservoir model. Finally, several proxy models are included in the hybrid workflow to evaluate the defined objective functions to reduce the computational cost. Results of the optimization workflow reveal that both the solvent concentration and duration of the solvent injection in the early cycles have significant impacts. It is recommended to inject solvent for longer periods during both the early and late SAS stages. It is also noted that cases with higher objective function values are observed with more heterogeneities. This work offers promising potential to derisk solvent-based technologies for heavy oil recovery by facilitating more robust field-scale decision-making.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhengfeng An; Edward W. Bork; Xinyi Duan; Cole D. Gross; +2 Authors

    AbstractInformation about regional‐level carbon (C) stocks in agroforestry systems (AFS), as well as the annual loss of agroforests and associated C stocks, is scarce, limiting our capacity for increasing C sequestration through establishing, retaining, and enhancing these systems. This study quantified regional‐level C stocks and the associated incremental economic value in the forest land‐use component of three common AFS (hedgerows, shelterbelts, and silvopastures), estimated the annual loss of hedgerow and silvopasture forests and the associated C, and assessed the potential to enhance C storage through the expansion of shelterbelts in central Alberta, Canada, using publicly available satellite imagery, previously collected field data and the Google Earth Engine platform. Results showed that forests in the three AFS stored 699.9 million tons (Mt) C across 9.5 million hectares (Mha) of land in central Alberta and were valued at $102.7 billion based on the 2021 Canadian C tax rate of $40 t−1 CO2‐equivalent. Silvopasture forests in the studied region had the highest C stocks, which were 14.2 and 67.2 times that found in hedgerow and shelterbelt forests, respectively. Between 2001 and 2020, forests in hedgerows and silvopastures declined at rates of 468.1 and 1957.1 ha year−1, respectively, leading to an 8.4 Mt decline in total C storage over the 20 years. However, there is potential to establish new shelterbelts at many road/field margins, which could increase C stocks by 2.3 times the current C stocks in shelterbelt forests. These results highlight the importance of retaining existing and establishing new AFS for increasing C sequestration, emphasizing the impact of agroforest loss on reducing C storage within agroecosystems. The development of policies that assist or reward landowners for providing the ecosystem service of C storage by retaining, establishing, and enhancing agroforests as part of existing agroecosystem management should be encouraged for mitigating climate change.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    GCB Bioenergy
    Article . 2022
    Data sources: DOAJ
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GCB Bioenergyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      GCB Bioenergy
      Article . 2022
      Data sources: DOAJ
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Carmen Faso; Dayana E. Salas-Leiva; Joel B. Dacks; Joel B. Dacks; +6 Authors

    ABSTRACTComparing a parasitic lineage to its free-living relatives is a powerful way to understand how the evolutionary transition to parasitism occurred.Giardia intestinalis(Fornicata) is a leading cause of gastrointestinal disease world-wide and is famous for its unusual complement of cellular compartments, such as having peripheral vacuoles instead of typical endosomal compartments. Endocytosis plays an important role inGiardia’s pathogenesis. Endosomal sorting complexes required for transport (ESCRT) are membrane-deforming proteins associated with the late endosome/multivesicular body (MVB). MVBs are ill-defined inG. intestinalisand roles for identified ESCRT-related proteins are not fully understood in the context of its unique endocytic system. Furthermore, components thought to be required for full ESCRT functionality have not yet been documented in this species.We used genomic and transcriptomic data from several Fornicata species to clarify the evolutionary genome streamlining observed inGiardia, as well as to detect any divergent orthologs of the Fornicata ESCRT subunits. We observed differences in the ESCRT machinery complement betweenGiardiastrains. Microscopy-based investigations of key components of ESCRT machinery such asGiVPS36andGiVPS25 link them to peripheral vacuoles, highlighting these organelles as simplified MVB equivalents. Unexpectedly, we show ESCRT components associated with the Endoplasmic Reticulum, and for the first time, mitosomes. Finally, we identified the rare ESCRT component CHMP7 in several fornicate representatives, includingGiardia, and show that contrary to current understanding, CHMP7 evolved from a gene fusion of VPS25 and SNF7 domains, prior to the last eukaryotic common ancestor, over 1.5 billion years ago. Our findings show that ESCRT machinery inG. intestinalisis far more varied and complete than previously thought, and associating to multiple cellular locations and presenting changes in ESCRT complement which pre-date adoption of a parasitic lifestyle.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://boris.unibe....arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://boris.unibe.ch/159060/...
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Conference object
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article . 2022
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    BMC Biology
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.48350/15...
    Other literature type . 2021
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    gold
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://boris.unibe....arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://boris.unibe.ch/159060/...
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Conference object
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article . 2022
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      BMC Biology
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5167/uzh...
      Other literature type . 2021
      Data sources: Datacite
      https://dx.doi.org/10.48350/15...
      Other literature type . 2021
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jacek Majorowicz; Stephen E. Grasby;

    We summarize the feasibility of using geothermal energy from the Western Canada Sedimentary Basin (WCSB) to support communities with populations >3000 people, including those in northeastern British Columbia, southwestern part of Northwest Territories (NWT), southern Saskatchewan, and southeastern Manitoba, along with previously studied communities in Alberta. The geothermal energy potential of the WCSB is largely determined by the basin’s geometry; the sediments start at 0 m thickness adjacent to the Canadian shield in the east and thicken to >6 km to the west, and over 3 km in the Williston sub-basin to the south. Direct heat use is most promising in the western and southern parts of the WCSB where sediment thickness exceeds 2–3 km. Geothermal potential is also dependent on the local geothermal gradient. Aquifers suitable for heating systems occur in western-northwestern Alberta, northeastern British Columbia, and southwestern Saskatchewan. Electrical power production is limited to the deepest parts of the WCSB, where aquifers >120 °C and fluid production rates >80 kg/s occur (southwestern Northwest Territories, northwestern Alberta, northeastern British Columbia, and southeastern Saskatchewan. For the western regions with the thickest sediments, the foreland basin east of the Rocky Mountains, estimates indicate that geothermal power up to 2 MWel. (electrical), and up to 10 times higher for heating in MWth. (thermal), are possible.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2021 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2021
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    12
    citations12
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2021 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2021
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.