- home
- Advanced Search
- Energy Research
- 6. Clean water
- GB
- CA
- DE
- Energy Research
- 6. Clean water
- GB
- CA
- DE
Research data keyboard_double_arrow_right Dataset 2016Publisher:Zenodo Authors: Florian Zabel;Natural potentials for future cropland expansion The potential for the expansion of cropland is restricted by the availability of land resources and given local natural conditions. As a result, area that is highly suitable for agriculture according to the prevailing local biophysical conditions but is not under cultivation today has a high natural potential for expansion. Policy regulations can further restrict the availability of land for expansion by designating protected areas, although they may be suitable for agriculture. Conversely, by applying e.g. irrigation practices, land can be brought under cultivation, although it may naturally not be suitable. Here, we investigate the potentials for agricultural expansion for near future climate scenario conditions to identify the suitability of non-cropland areas for expansion according to their local natural conditions. We determine the available energy, water and nutrient supply for agricultural suitability from climate, soil and topography data, by using a fuzzy logic approach according to Zabel et al. (2014). It considers the 16 globally most important staple and energy crops. These are: barley, cassava, groundnut, maize, millet, oil palm, potato, rapeseed, rice, rye, sorghum, soy, sugarcane, sunflower, summer wheat, winter wheat. The parameterization of the membership functions that describe each of the crops’ specific natural requirements is taken from Sys et al. (1993). The considered natural conditions are: climate (temperature, precipitation, solar radiation), soil properties (texture, proportion of coarse fragments and gypsum, base saturation, pH content, organic carbon content, salinity, sodicity), and topography (elevation, slope). As a result of the fuzzy logic approach, values in a range between 0 and 1 describe the suitability of a crop for each of the prevailing natural conditions at a certain location. The smallest suitability value over all parameters finally determines the suitability of a crop. The daily climate data is provided by simulation results from the global climate model ECHAM5 (Jungclaus et al. 2006) for near future (2011-2040) SRES A1B climate scenario conditions. Soil data is taken from the Harmonized World Soil Database (HWSD) (FAO et al. 2012), and topography data is applied from the Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007). In order to gather a general crop suitability, which does not refer to one specific crop, the most suitable crop with the highest suitability value is chosen at each pixel. In addition the natural biophysical conditions, we consider today’s irrigated areas according to (Siebert et al. 2013). We assume that irrigated areas globally remain constant until 2040, since adequate data on the development of irrigated areas do not exist, although it is likely that freshwater availability for irrigation could be limited in some regions, while in other regions surplus water supply could be used to expand irrigation practices (Elliott et al. 2014). However, it is difficult to project where irrigation practices will evolve, since it is driven by economic investment costs that are required to establish irrigation infrastructure. In principle, all agriculturally suitable land that is not used as cropland today has the natural potential to be converted into cropland. We assume that only urban and built-up areas are not available for conversion, although more than 80% of global urban areas are agriculturally suitable (Avellan et al. 2012). However, it seems unlikely that urban areas will be cleared at the large scale due to high investment costs, growing cities and growing demand for settlements. Concepts of urban and vertical farming usually are discussed under the aspects of cultivating fresh vegetables and salads for urban population. They are not designed to extensively grow staple crops such as wheat or maize for feeding the world in the near future. Urban farming would require one third of the total global urban area to meet only the global vegetable consumption of urban dwellers (Martellozzo et al. 2015). Thus, urban agriculture cannot substantially contribute to global agricultural production of staple crops. Protected areas or dense forested areas are not excluded from the calculation, in order not to lose any information in the further combination with the biodiversity patterns (see chapter 2.3). We use data on current cropland distribution by Ramankutty et al. (2008) and urban and built-up area according to the ESA-CCI land use/cover dataset (ESA 2014). From this data, we calculate the ‘natural expansion potential index’ (Iexp) that expresses the natural potential for an area to be converted into cropland as follows: Iexp = S * Aav The index is determined by the quality of agricultural suitability (S) (values between 0 and 1) multiplied with the amount of available area (Aav) for conversion (in percentage of pixel area). The available area includes all suitable area that is not cultivated today, and not classified as urban or artificial area. The index ranges between 0 and 100 and indicates where the conditions for cropland expansion are more or less favorable, when taking only natural conditions into account, disregarding socio-economic factors, policies and regulations that drive or inhibit cropland expansion. The index is a helpful indicator for identifying areas where cropland expansion could take place in the near future. Further information Detailled information are available in the following publication: Delzeit, R., F. Zabel, C. Meyer and T. Václavík (2017). Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change 17(5): 1429-1441. DOI: 10.1007/s10113-016-0927-1 Contact Please contact: Dr. Florian Zabel, f.zabel@lmu.de, Department für Geographie, LMU München (www.geografie.uni-muenchen.de) This research was carried out within the framework of the GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) Project, which has been supported by the German Ministry of Education and Research (BMBF) program on sustainable land management (grant number: 01LL0901E).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 150visibility views 150 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: Srivastava, Amit Kumar;doi: 10.60507/fk2/es2sdc
The yield gap for maize across the Ethiopia has been estimated using crop model LINTUL5 embedded into the modeling framework SIMPLACE (Scientific Impact Assessment and Modelling Platform for Advanced Crop and Ecosystem Management. The yield gap of a crop grown in a certain location and cropping system is defined as the difference between the yield and biomass under optimum management and the average yield achieved by farmers. Yield under optimum management is labeled as potential yield (Yp) under irrigated conditions or water-limited potential yield (Yw) under rain-fed conditions.Yp is location specific because of the climate, and not dependent on soil properties assuming that the required water and nutrients are non-limiting and can be added through management. Thus, in areas without major soil constraints, Yp is the most relevant benchmark for irrigated systems. Whereas, for rain-fed crops, Yw, equivalent to water-limited potential yield, is the most relevant benchmark. Both Yp and Yw are calculated for optimum planting dates, planting density and region-specific crop variety which is critical in determining the feasible growth duration, particularly in tropical climatic conditions where two or even three crops are produced each year on the same field. Purpose: To increase food production, identifying the regions with untapped production capacity is of prime importance and can be achieved by quantitative and spatially explicit estimates of Yield gaps, thus considering the spatial variation in environment and the production system. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c2bbd5ed-fd4c-4a3f-b0b1-113a5d4f3ddf}. The yield gaps plotted in the map were calculated as the average values of 7 years (the year 2004 -2010). The unit is Megagram per hectare (Mg ha-1) which is equivalent to tons ha-1. The climate data at the national scale was made available from the National Aeronautics and Space Administration (NASA), Goddard Institute of Space Studies(https://data.giss.nasa.gov/impacts/agmipcf/agmerra/), AgMERRA.The dataset is stored at 0.25°×0.25° horizontal resolution (~25km). Soil parameter values were extracted from the soil property maps of Africa at 1 km x 1 km resolution (http://www.isric.org/data/soil-property-maps-africa-1-km). Maize yields (Mg ha-1) and fertilizer application (Nitrogen and Phosphorus) rates over seven years (2004 - 2010) at administrative zone level have been collected from the Central Statistical Agency, Ethiopia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 14 Jul 2021Publisher:Dryad Leybourne, Daniel J; Preedy, Katharine F; Valentine, Tracy A; Bos, Jorunn I B; Karley, Alison J;1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear. 2. Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group, and to characterise any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to 1) aphid biology, 2) geographical region, 3) host plant biology. 3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigour and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigour and increased chemical defence in drought-stressed plants. 4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigour and defence to stimulate further research. Please check the ReadMe for an explanation of the values included in the dataset. Please note that n/a values are included in the Global_Dataset tab for plant meta-analysis data (_Plant_Vigour, _Plant_Defence, and _Plant_Nutrition), these indicate studies that did not report these parameters. Data was collected and curated using standard systematic literature synthesis approaches. The effect size (Hedges' g) reported in the dataset was calculated from extracted means and standard deviations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:UKRI | High Temperature, High Ef..., UKRI | Integrated Development of...UKRI| High Temperature, High Efficiency PV-Thermal Solar System ,UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyWinchester, Benedict; Huang, Gan; Beath, Hamish; Sandwell, Philip; Jiajun Cen; Nelson, Jenny; Markides, Christos N.;Optimisation results for the lowest lifetime cost system consisting of solar photovoltaic (PV), hybrid photovoltaic-thermal (PV-T) and solar-thermal collectors alongside battery and hot-water storage systems for meeting the electrical and thermal (hot-water) needs of three multi-effect distillation (MED) plants. The updated results are from optimisations runs carried out in response to peer-review comments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:NERC Environmental Information Data Centre Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; Whitaker, J.;Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data from an investigation of the effects of biochar application to soil on greenhouse gas emissions using soil from a bioenergy crop (Miscanthus X. giganteus). Data include physical (bulk density) and chemical analyses of the soil (total carbon (C) and nitrogen (N), extractable ammonium and nitrate), and greenhouse gas (GHG) emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) during incubations. Data were collected during two incubation experiments investigating the effects of temperature, soil moisture and soil aeration on biochar induced suppression of GHG emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/2757e972-a7fe-494d-92c3-c3205dfdef19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/2757e972-a7fe-494d-92c3-c3205dfdef19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 May 2023Publisher:NERC EDS Environmental Information Data Centre Authors: Miller, L.C.; Smeaton, C.; Garbutt, A.; Austin, W.E.N.;The dataset comprises of physical and biogeochemical measurements of belowground (root) biomass from across four Scottish saltmarshes. Sites were chosen to represent contrasting habitats types in Scotland, in particular sediment types, vegetation and sea level history. The data provide a quantitative measure of belowground (root) biomass, organic carbon content and belowground (root) carbon. Samples were collected using a wide gauge gouge corer. The samples were processed to determine belowground (root) biomass, the organic carbon was quantified through elemental analysis and these two data sets were combined to calculate the belowground (root) carbon content. The data were collected to help create a detailed picture of saltmarsh carbon storage in surficial soils across Scotland. The work was carried out under the NERC programme - Carbon Storage in Intertidal Environment (C-SIDE), NERC grant reference NE/R010846/1 Soil cores were taken at each sampling location using a wide diameter gouge corer. The location of the sample was recorded using GPS. Prior to analysis the samples were stored at 4 degrees Celsius at the University of St Andrews. Belowground (root) biomass, organic carbon content and belowground (root) carbon data was produced using standard analytical procedures (detailed in the supporting documentation). All laboratory equipment were calibrated in accordance with the laboratory practises at the University of St Andrews. Results were recorded on to lab sheets and transferred into an Excel file. Results were exported as comma separated value (.csv) files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/032627e0-5780-4601-b9b3-e684403cee70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/032627e0-5780-4601-b9b3-e684403cee70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Nov 2017Publisher:Dryad Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; Power, Michael;doi: 10.5061/dryad.q659t
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:4TU.ResearchData Authors: Kramer, Onno; Boek, Edo;A virtual lab (MOOC) for students chemical, civil or mechanical engineering. Students are introduced with a fluidised bed reactor (multiphase flow). This expansion column represents a liquid-solid fluidisation process applied in drinking water treatment processes. The knowledge you will gain will help you develop and improve your competence profile of a highly qualified chemical engineer. Students are informed with short lectures (films) and a manual (document). Several assignments must be completed based on recorded laboratory experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/12881009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/12881009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:NERC Environmental Information Data Centre Comer-Warner, S.A.; Romeijn, P.; Krause, S.; Gooddy, D.C.; Ullah, S.;Sediment was collected using a shovel before being sieved (0.8 cm for fine, and 1.6 cm for medium and coarse) and homogenised prior to storage. The sediment was stored airtight in the cold and dark. Sediment of varying organic matter content from two geological origins (chalk and sandstone) was incubated at five temperatures (5, 9, 15, 21 and 26°C). Resorufin production was measured using a GGUN-FL30 on-line fluorometer, dissolved oxygen was measured using a Pyro-science Firesting fixed needle-type probe, and carbon dioxide and methane concentrations were measured using an Agilent 7890A Gas Chromatograph - Flame Ionisation Detector. The carbon dioxide and methane concentrations were converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The data was then converted to emissions per volume of dry sediment using the Bunsen coefficient and the volume of sediment in each jar, resulting in units of milligrams of carbon per square metre per hour. Greenhouse gas concentrations were corrected for any machine drift using results from a standard gas mixture ran periodically during gas analysis. The resorufin concentration was converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The production was then normalised by the concentration of resazurin added to the jar, resulting in units of nanograms of resorufin per microgram of resazurin per hour. Data were entered into an Excel spreadsheet and exported as a comma separated value file (.csv) for ingestion into the EIDC. The dataset contains carbon dioxide and methane emissions, as well as resorufin production (as a proxy for microbial metabolic activity) and dissolved oxygen concentrations, resulting from laboratory incubation experiments of streambed sediments. The sediments were collected from the upper 10 centimetres of the streambed in the River Tern and the River Lambourn in September 2015, with three samples collected from each river. These samples were collected from three areas: silt-dominated sediment underneath vegetation (fine), sand-dominated sediment from unvegetated zones (medium) and gravel-dominated sediment from unvegetated zones (coarse). The sediment was used in laboratory incubation experiments to determine the effect of temperature, organic matter content, substrate type and geological origin on streambed microbial metabolic activity, and carbon dioxide and methane production. The work was carried out as part of a Natural Environment Research Council (NERC) funded PhD (NERC award number 1602135). The work was also part funded through the Seventh Framework Programme (EU grant number 607150).
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/3a0a5132-797c-4ed5-98b9-1c17eaa2f2b7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/3a0a5132-797c-4ed5-98b9-1c17eaa2f2b7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2016Publisher:Zenodo Authors: Florian Zabel;Natural potentials for future cropland expansion The potential for the expansion of cropland is restricted by the availability of land resources and given local natural conditions. As a result, area that is highly suitable for agriculture according to the prevailing local biophysical conditions but is not under cultivation today has a high natural potential for expansion. Policy regulations can further restrict the availability of land for expansion by designating protected areas, although they may be suitable for agriculture. Conversely, by applying e.g. irrigation practices, land can be brought under cultivation, although it may naturally not be suitable. Here, we investigate the potentials for agricultural expansion for near future climate scenario conditions to identify the suitability of non-cropland areas for expansion according to their local natural conditions. We determine the available energy, water and nutrient supply for agricultural suitability from climate, soil and topography data, by using a fuzzy logic approach according to Zabel et al. (2014). It considers the 16 globally most important staple and energy crops. These are: barley, cassava, groundnut, maize, millet, oil palm, potato, rapeseed, rice, rye, sorghum, soy, sugarcane, sunflower, summer wheat, winter wheat. The parameterization of the membership functions that describe each of the crops’ specific natural requirements is taken from Sys et al. (1993). The considered natural conditions are: climate (temperature, precipitation, solar radiation), soil properties (texture, proportion of coarse fragments and gypsum, base saturation, pH content, organic carbon content, salinity, sodicity), and topography (elevation, slope). As a result of the fuzzy logic approach, values in a range between 0 and 1 describe the suitability of a crop for each of the prevailing natural conditions at a certain location. The smallest suitability value over all parameters finally determines the suitability of a crop. The daily climate data is provided by simulation results from the global climate model ECHAM5 (Jungclaus et al. 2006) for near future (2011-2040) SRES A1B climate scenario conditions. Soil data is taken from the Harmonized World Soil Database (HWSD) (FAO et al. 2012), and topography data is applied from the Shuttle Radar Topography Mission (SRTM) (Farr et al. 2007). In order to gather a general crop suitability, which does not refer to one specific crop, the most suitable crop with the highest suitability value is chosen at each pixel. In addition the natural biophysical conditions, we consider today’s irrigated areas according to (Siebert et al. 2013). We assume that irrigated areas globally remain constant until 2040, since adequate data on the development of irrigated areas do not exist, although it is likely that freshwater availability for irrigation could be limited in some regions, while in other regions surplus water supply could be used to expand irrigation practices (Elliott et al. 2014). However, it is difficult to project where irrigation practices will evolve, since it is driven by economic investment costs that are required to establish irrigation infrastructure. In principle, all agriculturally suitable land that is not used as cropland today has the natural potential to be converted into cropland. We assume that only urban and built-up areas are not available for conversion, although more than 80% of global urban areas are agriculturally suitable (Avellan et al. 2012). However, it seems unlikely that urban areas will be cleared at the large scale due to high investment costs, growing cities and growing demand for settlements. Concepts of urban and vertical farming usually are discussed under the aspects of cultivating fresh vegetables and salads for urban population. They are not designed to extensively grow staple crops such as wheat or maize for feeding the world in the near future. Urban farming would require one third of the total global urban area to meet only the global vegetable consumption of urban dwellers (Martellozzo et al. 2015). Thus, urban agriculture cannot substantially contribute to global agricultural production of staple crops. Protected areas or dense forested areas are not excluded from the calculation, in order not to lose any information in the further combination with the biodiversity patterns (see chapter 2.3). We use data on current cropland distribution by Ramankutty et al. (2008) and urban and built-up area according to the ESA-CCI land use/cover dataset (ESA 2014). From this data, we calculate the ‘natural expansion potential index’ (Iexp) that expresses the natural potential for an area to be converted into cropland as follows: Iexp = S * Aav The index is determined by the quality of agricultural suitability (S) (values between 0 and 1) multiplied with the amount of available area (Aav) for conversion (in percentage of pixel area). The available area includes all suitable area that is not cultivated today, and not classified as urban or artificial area. The index ranges between 0 and 100 and indicates where the conditions for cropland expansion are more or less favorable, when taking only natural conditions into account, disregarding socio-economic factors, policies and regulations that drive or inhibit cropland expansion. The index is a helpful indicator for identifying areas where cropland expansion could take place in the near future. Further information Detailled information are available in the following publication: Delzeit, R., F. Zabel, C. Meyer and T. Václavík (2017). Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Regional Environmental Change 17(5): 1429-1441. DOI: 10.1007/s10113-016-0927-1 Contact Please contact: Dr. Florian Zabel, f.zabel@lmu.de, Department für Geographie, LMU München (www.geografie.uni-muenchen.de) This research was carried out within the framework of the GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) Project, which has been supported by the German Ministry of Education and Research (BMBF) program on sustainable land management (grant number: 01LL0901E).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 150visibility views 150 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3749507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 18 Sep 2023Publisher:bonndata Authors: Srivastava, Amit Kumar;doi: 10.60507/fk2/es2sdc
The yield gap for maize across the Ethiopia has been estimated using crop model LINTUL5 embedded into the modeling framework SIMPLACE (Scientific Impact Assessment and Modelling Platform for Advanced Crop and Ecosystem Management. The yield gap of a crop grown in a certain location and cropping system is defined as the difference between the yield and biomass under optimum management and the average yield achieved by farmers. Yield under optimum management is labeled as potential yield (Yp) under irrigated conditions or water-limited potential yield (Yw) under rain-fed conditions.Yp is location specific because of the climate, and not dependent on soil properties assuming that the required water and nutrients are non-limiting and can be added through management. Thus, in areas without major soil constraints, Yp is the most relevant benchmark for irrigated systems. Whereas, for rain-fed crops, Yw, equivalent to water-limited potential yield, is the most relevant benchmark. Both Yp and Yw are calculated for optimum planting dates, planting density and region-specific crop variety which is critical in determining the feasible growth duration, particularly in tropical climatic conditions where two or even three crops are produced each year on the same field. Purpose: To increase food production, identifying the regions with untapped production capacity is of prime importance and can be achieved by quantitative and spatially explicit estimates of Yield gaps, thus considering the spatial variation in environment and the production system. This dataset was first published on the institutional Repository "Zentrum für Entwicklungsforschung: ZEF Data Portal" with ID={c2bbd5ed-fd4c-4a3f-b0b1-113a5d4f3ddf}. The yield gaps plotted in the map were calculated as the average values of 7 years (the year 2004 -2010). The unit is Megagram per hectare (Mg ha-1) which is equivalent to tons ha-1. The climate data at the national scale was made available from the National Aeronautics and Space Administration (NASA), Goddard Institute of Space Studies(https://data.giss.nasa.gov/impacts/agmipcf/agmerra/), AgMERRA.The dataset is stored at 0.25°×0.25° horizontal resolution (~25km). Soil parameter values were extracted from the soil property maps of Africa at 1 km x 1 km resolution (http://www.isric.org/data/soil-property-maps-africa-1-km). Maize yields (Mg ha-1) and fertilizer application (Nitrogen and Phosphorus) rates over seven years (2004 - 2010) at administrative zone level have been collected from the Central Statistical Agency, Ethiopia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60507/fk2/es2sdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 14 Jul 2021Publisher:Dryad Leybourne, Daniel J; Preedy, Katharine F; Valentine, Tracy A; Bos, Jorunn I B; Karley, Alison J;1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear. 2. Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group, and to characterise any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to 1) aphid biology, 2) geographical region, 3) host plant biology. 3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigour and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigour and increased chemical defence in drought-stressed plants. 4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigour and defence to stimulate further research. Please check the ReadMe for an explanation of the values included in the dataset. Please note that n/a values are included in the Global_Dataset tab for plant meta-analysis data (_Plant_Vigour, _Plant_Defence, and _Plant_Nutrition), these indicate studies that did not report these parameters. Data was collected and curated using standard systematic literature synthesis approaches. The effect size (Hedges' g) reported in the dataset was calculated from extracted means and standard deviations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 16visibility views 16 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jdfn2z3bn&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:UKRI | High Temperature, High Ef..., UKRI | Integrated Development of...UKRI| High Temperature, High Efficiency PV-Thermal Solar System ,UKRI| Integrated Development of Low-Carbon Energy Systems (IDLES): A Whole-System Paradigm for Creating a National StrategyWinchester, Benedict; Huang, Gan; Beath, Hamish; Sandwell, Philip; Jiajun Cen; Nelson, Jenny; Markides, Christos N.;Optimisation results for the lowest lifetime cost system consisting of solar photovoltaic (PV), hybrid photovoltaic-thermal (PV-T) and solar-thermal collectors alongside battery and hot-water storage systems for meeting the electrical and thermal (hot-water) needs of three multi-effect distillation (MED) plants. The updated results are from optimisations runs carried out in response to peer-review comments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 6visibility views 6 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7801892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2014Publisher:NERC Environmental Information Data Centre Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; Whitaker, J.;Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data from an investigation of the effects of biochar application to soil on greenhouse gas emissions using soil from a bioenergy crop (Miscanthus X. giganteus). Data include physical (bulk density) and chemical analyses of the soil (total carbon (C) and nitrogen (N), extractable ammonium and nitrate), and greenhouse gas (GHG) emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) during incubations. Data were collected during two incubation experiments investigating the effects of temperature, soil moisture and soil aeration on biochar induced suppression of GHG emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/2757e972-a7fe-494d-92c3-c3205dfdef19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/2757e972-a7fe-494d-92c3-c3205dfdef19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 May 2023Publisher:NERC EDS Environmental Information Data Centre Authors: Miller, L.C.; Smeaton, C.; Garbutt, A.; Austin, W.E.N.;The dataset comprises of physical and biogeochemical measurements of belowground (root) biomass from across four Scottish saltmarshes. Sites were chosen to represent contrasting habitats types in Scotland, in particular sediment types, vegetation and sea level history. The data provide a quantitative measure of belowground (root) biomass, organic carbon content and belowground (root) carbon. Samples were collected using a wide gauge gouge corer. The samples were processed to determine belowground (root) biomass, the organic carbon was quantified through elemental analysis and these two data sets were combined to calculate the belowground (root) carbon content. The data were collected to help create a detailed picture of saltmarsh carbon storage in surficial soils across Scotland. The work was carried out under the NERC programme - Carbon Storage in Intertidal Environment (C-SIDE), NERC grant reference NE/R010846/1 Soil cores were taken at each sampling location using a wide diameter gouge corer. The location of the sample was recorded using GPS. Prior to analysis the samples were stored at 4 degrees Celsius at the University of St Andrews. Belowground (root) biomass, organic carbon content and belowground (root) carbon data was produced using standard analytical procedures (detailed in the supporting documentation). All laboratory equipment were calibrated in accordance with the laboratory practises at the University of St Andrews. Results were recorded on to lab sheets and transferred into an Excel file. Results were exported as comma separated value (.csv) files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/032627e0-5780-4601-b9b3-e684403cee70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/032627e0-5780-4601-b9b3-e684403cee70&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Nov 2017Publisher:Dryad Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; Power, Michael;doi: 10.5061/dryad.q659t
Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 10visibility views 10 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.q659t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:4TU.ResearchData Authors: Kramer, Onno; Boek, Edo;A virtual lab (MOOC) for students chemical, civil or mechanical engineering. Students are introduced with a fluidised bed reactor (multiphase flow). This expansion column represents a liquid-solid fluidisation process applied in drinking water treatment processes. The knowledge you will gain will help you develop and improve your competence profile of a highly qualified chemical engineer. Students are informed with short lectures (films) and a manual (document). Several assignments must be completed based on recorded laboratory experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/12881009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4121/12881009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018Publisher:NERC Environmental Information Data Centre Comer-Warner, S.A.; Romeijn, P.; Krause, S.; Gooddy, D.C.; Ullah, S.;Sediment was collected using a shovel before being sieved (0.8 cm for fine, and 1.6 cm for medium and coarse) and homogenised prior to storage. The sediment was stored airtight in the cold and dark. Sediment of varying organic matter content from two geological origins (chalk and sandstone) was incubated at five temperatures (5, 9, 15, 21 and 26°C). Resorufin production was measured using a GGUN-FL30 on-line fluorometer, dissolved oxygen was measured using a Pyro-science Firesting fixed needle-type probe, and carbon dioxide and methane concentrations were measured using an Agilent 7890A Gas Chromatograph - Flame Ionisation Detector. The carbon dioxide and methane concentrations were converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The data was then converted to emissions per volume of dry sediment using the Bunsen coefficient and the volume of sediment in each jar, resulting in units of milligrams of carbon per square metre per hour. Greenhouse gas concentrations were corrected for any machine drift using results from a standard gas mixture ran periodically during gas analysis. The resorufin concentration was converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The production was then normalised by the concentration of resazurin added to the jar, resulting in units of nanograms of resorufin per microgram of resazurin per hour. Data were entered into an Excel spreadsheet and exported as a comma separated value file (.csv) for ingestion into the EIDC. The dataset contains carbon dioxide and methane emissions, as well as resorufin production (as a proxy for microbial metabolic activity) and dissolved oxygen concentrations, resulting from laboratory incubation experiments of streambed sediments. The sediments were collected from the upper 10 centimetres of the streambed in the River Tern and the River Lambourn in September 2015, with three samples collected from each river. These samples were collected from three areas: silt-dominated sediment underneath vegetation (fine), sand-dominated sediment from unvegetated zones (medium) and gravel-dominated sediment from unvegetated zones (coarse). The sediment was used in laboratory incubation experiments to determine the effect of temperature, organic matter content, substrate type and geological origin on streambed microbial metabolic activity, and carbon dioxide and methane production. The work was carried out as part of a Natural Environment Research Council (NERC) funded PhD (NERC award number 1602135). The work was also part funded through the Seventh Framework Programme (EU grant number 607150).
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/3a0a5132-797c-4ed5-98b9-1c17eaa2f2b7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/3a0a5132-797c-4ed5-98b9-1c17eaa2f2b7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Embargo end date: 17 Feb 2018Publisher:Dryad Digital Repository Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.t6m9m.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu