- home
- Advanced Search
- Energy Research
- 2016-2025
- 11. Sustainability
- 15. Life on land
- 14. Life underwater
- DE
- CA
- Energy Research
- 2016-2025
- 11. Sustainability
- 15. Life on land
- 14. Life underwater
- DE
- CA
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Metsaranta, Juha; Mamet, Steven; Maillet, Jay; Barr, Alan;These datasets are associated with the following paper: Metsaranta, J.M., Mamet, S.D., Maillett, J., Barr, A.G. (2021). Comparison of tree-ring and eddy covariance derived annual ecosystem production estimates for jack pine and trembling aspen forests in Saskatchewan, Canada. Agricultural and Forest Meteorology. There are two files: (1) CBMOutput.zip. This contains the hybrid biometric modelled ecosystem C stock and flux estimates. (2) StandReconstructionData.zip. This contains the field measurement data and the tree level biomass and wood volume data for the Stand Reconstruction plots used to develop the hybrid biometric modelled estimates. The data are formatted as .csv files, and an associated Microsoft Excel spreadsheet explains the data columns and provides information on the associated units of measure.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 21 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:NERC EDS Environmental Information Data Centre Mercer, C.; Jump, A.; Morley, P.; O’Sullivan, K.; Van Der Maaten-Theunissen, M.; Zang, C.;Tree cores were sampled using increment borers. At each site three trees were chosen for coring, with two or three cores taken per tree. Cores were sanded and ring widths measured based on high-resolution images of the sanded cores. Cores were cross-dated and summary statistics used to compare cross-dating accuracy. The dataset contains the resulting dated ring width series. This dataset includes tree ring width data, derived from tree cores, that were sampled from sites across the Rhön Biosphere Reserve (Germany). At each chosen site three trees were cored, with two or three cores taken per cored tree. Data was collected in August 2021.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/8d6effc3-54f2-4770-ac34-63320eb9e4e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/8d6effc3-54f2-4770-ac34-63320eb9e4e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 31 Jan 2023Publisher:Edmond Opito, Emmanuel A.; Alanko, Timo; Kalbitzer, Urs; Nummelin, Matti; Omeja, Patrick; Valtonen, Anu; Chapman, Colin A.;doi: 10.17617/3.6j4za0
Data from: 30 Years Brings Changes to the Arthropod Community of Kibale National Park, Uganda by Opito, E.A., T. Alanko, U. Kalbitzer, M. Nummelin, P. Omeja, A. Valtonen, and Colin A. Chapman. 2023, Biotropica, Article DOI: 10.1111/btp.13206
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; +47 AuthorsSchupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Früh, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutsches Klimarechenzentrum, Hamburg 20146, Germany (DKRZ) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Pfl��ger, Mika; G��tschow, Johannes;{"references": ["UNSD Demographic Statistics, available at http://data.un.org", "The World Bank GDP data, available at https://data.worldbank.org/", "UNFCCC: Greenhouse Gas Inventory Data, available at https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/what-is-greenhouse-gas-data"]} Dataset containing all greenhouse gas emissions data submitted by countries under climate change convention (including CRF data) as published by the UNFCCC secretariat at 2021-12-03. The dataset is also available via datalad. To obtain the dataset with datalad, see the instructions at https://github.com/mikapfl/unfccc_di_data .
ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 215visibility views 215 download downloads 37 Powered bymore_vert ZENODO arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5752337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Publisher:Zenodo Authors: Ueckerdt, Falko;This climate change impact data (future scenarios on temperature-induced GDP losses) and climate change mitigation cost data (REMIND model scenarios) is published under doi: 10.5281/zenodo.3541809 and used in this paper: Ueckerdt F, Frieler K, Lange S, Wenz L, Luderer G, Levermann A (2018) The economically optimal warming limit of the planet. Earth System Dynamics. https://doi.org/10.5194/esd-10-741-2019 Below the individual file contents are explained. For further questions feel free to write to Falko Ueckerdt (ueckerdt@pik-potsdam.de). Climate change impact data File 1: Data_rel-GDPpercapita-changes_withCC_per-country_all-RCP_all-SSP_4GCM.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, RCP (and a zero-emissions scenario), SSP and 4 GCMs (spanning a broad range of climate sensitivity). Negative (positive) values indicate losses (gains) due to climate change. For figure 1a of the paper, this data was aggregated for all countries. File 2: Data_rel-GDPpercapita-changes_withCC_per-country_all-SSP_4GCM_interpolated-for-REMIND-scenarios.csv Content: Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP and 4 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). File 3: Data_rel-GDPpercapita-changes_withCC_per-country_SSP2_12GCM_interpolated-for-REMIND-scenarios.csv Content: Same as file 2, but only for the SSP2 (chosen default scenario for the study) and for all 12 GCMs. Data of relative change in absolute GDP/CAP levels (compared to the baseline path of the respective SSP in the SSP database) for each country, SSP-2 and 12 GCMs (spanning a broad range of climate sensitivity). The RCP (and a zero-emissions scenario) are interpolated to the temperature pathways of the ten REMIND model scenarios used for climate change mitigation costs. Hereby the set of scenarios for climate impacts and climate change mitigation are consistent and can be combined to total costs of climate change (for a broad range of mitigation action). In addition, reference GDP and population data (without climate change) for each country until 2100 was downloaded from the SSP database, release Version 1.0 (March 2013, https://tntcat.iiasa.ac.at/SspDb/, last accessed 15Nov 2019). Climate change mitigation cost data The scenario design and runs used in this paper have first been conducted in [1] and later also used in [2]. File 4: REMIND_scenario_results_economic_data.csv File 5: REMIND_scenarios_climate_data.csv Content: A broad range of climate change mitigation scenarios of the REMIND model. File 4 contains the economic data of e.g. GDP and macro-economic consumption for each of the countries and world regions, as well as GHG emissions from various economic sectors. File 5 contains the global climate-related data, e.g. forcing, concentration, temperature. In the scenario description “FFrunxxx” (column 2), the code “xxx” specifies the scenario as follows. See [1] for a detailed discussion of the scenarios. The first dimension specifies the climate policy regime (delayed action, baseline scenarios): 1xx: climate action from 2010 5xx: climate action from 2015 2xx climate action from 2020 (used in this study) 3xx climate action from 2030 4x1 weak policy baseline (before Paris agreement) The second dimension specifies the technology portfolio and assumptions: x1x Full technology portfolio (used in this study) x2x noCCS: unavailability of CCS x3x lowEI: lower energy intensity, with final energy demand per economic output decreasing faster than historically observed x4x NucPO: phase out of investments into nuclear energy x5x Limited SW: penetration of solar and wind power limited x6x Limited Bio: reduced bioenergy potential p.a. (100 EJ compared to 300 EJ in all other cases) x6x noBECCS: unavailability of CCS in combination with bioenergy The third dimension specifies the climate change mitigation ambition level, i.e. the height of a global CO2 tax in 2020 (which increases with 5% p.a.). xx1 0$/tCO2 (baseline) xx2 10$/tCO2 xx3 30$/tCO2 xx4 50$/tCO2 xx5 100$/tCO2 xx6 200$/tCO2 xx7 500$/tCO2 xx8 40$/tCO2 xx9 20$/tCO2 xx0 5$/tCO2 For figure 1b of the paper, this data was aggregated for all countries and regions. Relative changes of GDP are calculated relative to the baseline (4x1 with zero carbon price). [1] Luderer, G., Pietzcker, R. C., Bertram, C., Kriegler, E., Meinshausen, M. and Edenhofer, O.: Economic mitigation challenges: how further delay closes the door for achieving climate targets, Environmental Research Letters, 8(3), 034033, doi:10.1088/1748-9326/8/3/034033, 2013a. [2] Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V. and Riahi, K.: Energy system transformations for limiting end-of-century warming to below 1.5 °C, Nature Climate Change, 5(6), 519–527, doi:10.1038/nclimate2572, 2015.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 1Kvisibility views 1,466 download downloads 925 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3541808&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Metsaranta, Juha; Mamet, Steven; Maillet, Jay; Barr, Alan;These datasets are associated with the following paper: Metsaranta, J.M., Mamet, S.D., Maillett, J., Barr, A.G. (2021). Comparison of tree-ring and eddy covariance derived annual ecosystem production estimates for jack pine and trembling aspen forests in Saskatchewan, Canada. Agricultural and Forest Meteorology. There are two files: (1) CBMOutput.zip. This contains the hybrid biometric modelled ecosystem C stock and flux estimates. (2) StandReconstructionData.zip. This contains the field measurement data and the tree level biomass and wood volume data for the Stand Reconstruction plots used to develop the hybrid biometric modelled estimates. The data are formatted as .csv files, and an associated Microsoft Excel spreadsheet explains the data columns and provides information on the associated units of measure.
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 21 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4716568&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:GFZ Data Services Authors: Hofmann, Matthias; Liebermann, Ralf;doi: 10.5880/pik.2023.003
The data comprise Climber3alpha+C simulations created by Matthias Hofmann (PIK) as part of the Work Package 2.1 of the COMFORT project as well as the PyFerret scripts (written by Ralf Liebermann and Matthias Hofmann) used for their evaluation. The simulation data consist of snap_*.nc files and history.nc files for ocean, atmosphere and mixed layer depth (hmxl) performed for different idealized scenarios: CONTROL, double and fourfold atmospheric CO2 (CO2X2 and CO2X4), also with additional Greenland freshwater influx (CO2X2_HOSING and CO2X4_HOSING). Furthermore, tracer simulations (CONTROL, CO2X4, CO2X4_HOSING) and simulations with constant scavenging (CO2X4) are also included. The aim was to analyse the simulations regarding climate change-induced changes in marine biogeochemistry and primary production, which will be published under the title "Shutdown of Atlantic overturning circulation could cause persistent increase of primary production in the Pacific" (see Related Work). Simulation data were generated with Climber3alpha+C (Earth system model of intermediate complexity) and evaluated with PyFerret v7.41. CDO was used to aggregate monthly simulation data into annual means.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5880/pik.2023.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:NERC EDS Environmental Information Data Centre Mercer, C.; Jump, A.; Morley, P.; O’Sullivan, K.; Van Der Maaten-Theunissen, M.; Zang, C.;Tree cores were sampled using increment borers. At each site three trees were chosen for coring, with two or three cores taken per tree. Cores were sanded and ring widths measured based on high-resolution images of the sanded cores. Cores were cross-dated and summary statistics used to compare cross-dating accuracy. The dataset contains the resulting dated ring width series. This dataset includes tree ring width data, derived from tree cores, that were sampled from sites across the Rhön Biosphere Reserve (Germany). At each chosen site three trees were cored, with two or three cores taken per cored tree. Data was collected in August 2021.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/8d6effc3-54f2-4770-ac34-63320eb9e4e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/8d6effc3-54f2-4770-ac34-63320eb9e4e2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 31 Jan 2023Publisher:Edmond Opito, Emmanuel A.; Alanko, Timo; Kalbitzer, Urs; Nummelin, Matti; Omeja, Patrick; Valtonen, Anu; Chapman, Colin A.;doi: 10.17617/3.6j4za0
Data from: 30 Years Brings Changes to the Arthropod Community of Kibale National Park, Uganda by Opito, E.A., T. Alanko, U. Kalbitzer, M. Nummelin, P. Omeja, A. Valtonen, and Colin A. Chapman. 2023, Biotropica, Article DOI: 10.1111/btp.13206
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17617/3.6j4za0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Schupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; +47 AuthorsSchupfner, Martin; Wieners, Karl-Hermann; Wachsmann, Fabian; Steger, Christian; Bittner, Matthias; Jungclaus, Johann; Früh, Barbara; Pankatz, Klaus; Giorgetta, Marco; Reick, Christian; Legutke, Stephanie; Esch, Monika; Gayler, Veronika; Haak, Helmuth; de Vrese, Philipp; Raddatz, Thomas; Mauritsen, Thorsten; von Storch, Jin-Song; Behrens, Jörg; Brovkin, Victor; Claussen, Martin; Crueger, Traute; Fast, Irina; Fiedler, Stephanie; Hagemann, Stefan; Hohenegger, Cathy; Jahns, Thomas; Kloster, Silvia; Kinne, Stefan; Lasslop, Gitta; Kornblueh, Luis; Marotzke, Jochem; Matei, Daniela; Meraner, Katharina; Mikolajewicz, Uwe; Modali, Kameswarrao; Müller, Wolfgang; Nabel, Julia; Notz, Dirk; Peters-von Gehlen, Karsten; Pincus, Robert; Pohlmann, Holger; Pongratz, Julia; Rast, Sebastian; Schmidt, Hauke; Schnur, Reiner; Schulzweida, Uwe; Six, Katharina; Stevens, Bjorn; Voigt, Aiko; Roeckner, Erich;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.DKRZ.MPI-ESM1-2-HR.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HR climate model, released in 2017, includes the following components: aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the Deutsches Klimarechenzentrum, Hamburg 20146, Germany (DKRZ) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spdkme2s126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Neubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; +18 AuthorsNeubauer, David; Ferrachat, Sylvaine; Siegenthaler-Le Drian, Colombe; Stoll, Jens; Folini, Doris Sylvia; Tegen, Ina; Wieners, Karl-Hermann; Mauritsen, Thorsten; Stemmler, Irene; Barthel, Stefan; Bey, Isabelle; Daskalakis, Nikos; Heinold, Bernd; Kokkola, Harri; Partridge, Daniel; Rast, Sebastian; Schmidt, Hauke; Schutgens, Nick; Stanelle, Tanja; Stier, Philip; Watson-Parris, Duncan; Lohmann, Ulrike;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.AerChemMIP.HAMMOZ-Consortium.MPI-ESM-1-2-HAM' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The MPI-ESM1.2-HAM climate model, released in 2017, includes the following components: aerosol: HAM2.3, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), atmosChem: sulfur chemistry (unnamed), land: JSBACH 3.20, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model). The model was run by the ETH Zurich, Switzerland; Max Planck Institut fur Meteorologie, Germany; Forschungszentrum Julich, Germany; University of Oxford, UK; Finnish Meteorological Institute, Finland; Leibniz Institute for Tropospheric Research, Germany; Center for Climate Systems Modeling (C2SM) at ETH Zurich, Switzerland (HAMMOZ-Consortium) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6achcme1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu