- home
- Advanced Search
- Energy Research
- 2016-2025
- agricultural and veterinary science...
- US
- FR
- CA
- Energy Research
- 2016-2025
- agricultural and veterinary science...
- US
- FR
- CA
description Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors:Bastakoti, Ram C.;
Prathapar, S.A.; Okwany, Romulus O.;Bastakoti, Ram C.
Bastakoti, Ram C. in OpenAIREhandle: 10568/77036
AbstractA large number of small- to medium-sized community ponds exist in most parts of the Terai region in Nepal. Such ponds could be a viable alternative for other forms of surface irrigation. But, with the lack of efficient management, many of these ponds remain underutilized. An effort was made to facilitate the rehabilitation of such a pond in a selected village of Rupandehi District in Western Terai region of Nepal. This paper aims to evaluate the changed water availability situation in post-monsoon seasons after the pond rehabilitation. The paper also evaluates the feasibility of such interventions especially focusing on the potential to provide additional water and improve agricultural productivity. Results showed small increases in quantifiable indicators such as water availability, cropping intensity, productivity and income. The new institutional setup improved water allocation, improved operation and maintenance, and increased social awareness among the people about the importance of underutilized water resources. The intervention has the potential to be replicated in similar contexts.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77036Data sources: Bielefeld Academic Search Engine (BASE)Water Resources and Rural DevelopmentArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefWater Resources and Rural DevelopmentArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wrr.2016.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016License: CC BYFull-Text: https://hdl.handle.net/10568/77036Data sources: Bielefeld Academic Search Engine (BASE)Water Resources and Rural DevelopmentArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefWater Resources and Rural DevelopmentArticle . 2016License: CC BYData sources: BASE (Open Access Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wrr.2016.01.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingAuthors:Minasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.; +30 AuthorsMcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREMinasny, Budiman;
Malone, Brendan P.;Minasny, Budiman
Minasny, Budiman in OpenAIREMcbratney, Alex B.;
Angers, Denis A.;Mcbratney, Alex B.
Mcbratney, Alex B. in OpenAIREArrouays, Dominique;
Chambers, Adam;Arrouays, Dominique
Arrouays, Dominique in OpenAIREChaplot, Vincent;
Chen, Zueng-Sang;Chaplot, Vincent
Chaplot, Vincent in OpenAIRECheng, Kun;
Cheng, Kun
Cheng, Kun in OpenAIREDas, Bhabani S.;
Das, Bhabani S.
Das, Bhabani S. in OpenAIREField, Damien J.;
Gimona, Alessandro;Field, Damien J.
Field, Damien J. in OpenAIREHedley, Carolyn B.;
Hong, Suk Young; Mandal, Biswapati;Hedley, Carolyn B.
Hedley, Carolyn B. in OpenAIREMarchant, Ben P.;
Marchant, Ben P.
Marchant, Ben P. in OpenAIREMartin, Manuel;
Mcconkey, Brian G.;Martin, Manuel
Martin, Manuel in OpenAIREMulder, Vera Leatitia;
Mulder, Vera Leatitia
Mulder, Vera Leatitia in OpenAIREO'Rourke, Sharon;
O'Rourke, Sharon
O'Rourke, Sharon in OpenAIRERicher-De-Forges, Anne C;
Odeh, Inakwu;Richer-De-Forges, Anne C
Richer-De-Forges, Anne C in OpenAIREPadarian, José;
Paustian, Keith; Pan, Genxing;Padarian, José
Padarian, José in OpenAIREPoggio, Laura;
Poggio, Laura
Poggio, Laura in OpenAIRESavin, Igor;
Stolbovoy, Vladimir;Savin, Igor
Savin, Igor in OpenAIREStockmann, Uta;
Stockmann, Uta
Stockmann, Uta in OpenAIRESulaeman, Yiyi;
Tsui, Chun-Chih;Sulaeman, Yiyi
Sulaeman, Yiyi in OpenAIREVågen, Tor-Gunnar;
Vågen, Tor-Gunnar
Vågen, Tor-Gunnar in OpenAIREvan Wesemael, Bas;
Winowiecki, Leigh;van Wesemael, Bas
van Wesemael, Bas in OpenAIREThe ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 FrancePublisher:Elsevier BV Authors:J.Y. Mutua;
J.Y. Mutua
J.Y. Mutua in OpenAIREK. Marshall;
K. Marshall
K. Marshall in OpenAIREB.K. Paul;
B.K. Paul
B.K. Paul in OpenAIREA.M.O. Notenbaert;
A.M.O. Notenbaert
A.M.O. Notenbaert in OpenAIREHeat stress is a global issue constraining pig productivity, and it is likely to intensify under future climate change. Technological advances in earth observation have made tools available that enable identification and mapping livestock species that are at risk of exposure to heat stress due to climate change. Here, we present a methodology to map the current and likely future heat stress risk in pigs using R software by combining the effects of temperature and relative humidity. We applied the method to growing-finishing pigs in Uganda. We mapped monthly heat stress risk and quantified the number of pigs exposed to heat stress using 18 global circulation models and projected impacts in the 2050s. Results show that more than 800 000 pigs in Uganda will be affected by heat stress in the future. The results can feed into evidence-based policy, planning and targeted resource allocation in the livestock sector.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/108152Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731120000865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/108152Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/s1751731120000865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United StatesPublisher:MDPI AG Funded by:NSF | LTER: Drivers, dynamics a..., NSF | LTER: Climate drivers, d...NSF| LTER: Drivers, dynamics and consequences of non-linear change in coastal barrier systems ,NSF| LTER: Climate drivers, dynamics, and consequences of ecosystem state change in coastal barrier systemsAuthors: Rehman S. Eon;Sarah Goldsmith;
Sarah Goldsmith
Sarah Goldsmith in OpenAIRECharles M. Bachmann;
Charles M. Bachmann
Charles M. Bachmann in OpenAIREAnna Christina Tyler;
+4 AuthorsAnna Christina Tyler
Anna Christina Tyler in OpenAIRERehman S. Eon;Sarah Goldsmith;
Sarah Goldsmith
Sarah Goldsmith in OpenAIRECharles M. Bachmann;
Charles M. Bachmann
Charles M. Bachmann in OpenAIREAnna Christina Tyler;
Christopher S. Lapszynski;Anna Christina Tyler
Anna Christina Tyler in OpenAIREGregory P. Badura;
David T. Osgood; Ryan Brett;Gregory P. Badura
Gregory P. Badura in OpenAIREdoi: 10.3390/rs11111385
Salt marsh vegetation density varies considerably on short spatial scales, complicating attempts to evaluate plant characteristics using airborne remote sensing approaches. In this study, we used a mast-mounted hyperspectral imaging system to obtain cm-scale imagery of a salt marsh chronosequence on Hog Island, VA, where the morphology and biomass of the dominant plant species, Spartina alterniflora, varies widely. The high-resolution hyperspectral imagery allowed the detailed delineation of variations in above-ground biomass, which we retrieved from the imagery using the PROSAIL radiative transfer model. The retrieved biomass estimates correlated well with contemporaneously collected in situ biomass ground truth data ( R 2 = 0.73 ). In this study, we also rescaled our hyperspectral imagery and retrieved PROSAIL salt marsh biomass to determine the applicability of the method across spatial scales. Histograms of retrieved biomass changed considerably in characteristic marsh regions as the spatial scale of the imagery was progressively degraded. This rescaling revealed a loss of spatial detail and a shift in the mean retrieved biomass. This shift is indicative of the loss of accuracy that may occur when scaling up through a simple averaging approach that does not account for the detail found in the landscape at the natural scale of variation of the salt marsh system. This illustrated the importance of developing methodologies to appropriately scale results from very fine scale resolution up to the more coarse-scale resolutions commonly obtained in airborne and satellite remote sensing.
Remote Sensing arrow_drop_down Remote SensingOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2072-4292/11/11/1385/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11111385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Remote Sensing arrow_drop_down Remote SensingOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2072-4292/11/11/1385/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs11111385&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United States, United States, AustraliaPublisher:MDPI AG Authors:John B. Gaughan;
John B. Gaughan
John B. Gaughan in OpenAIREA. M. Lees;
A. M. Lees; Cameron C. Steel; +4 AuthorsA. M. Lees
A. M. Lees in OpenAIREJohn B. Gaughan;
John B. Gaughan
John B. Gaughan in OpenAIREA. M. Lees;
A. M. Lees; Cameron C. Steel; Andrea L. Wallage;A. M. Lees
A. M. Lees in OpenAIREVeerasamy Sejian;
Terry L. Mader;Veerasamy Sejian
Veerasamy Sejian in OpenAIREJ. C. Lees;
J. C. Lees
J. C. Lees in OpenAIREHeat stress and cold stress have a negative influence on cattle welfare and productivity. There have been some studies investigating the influence of cold stress on cattle, however the emphasis within this review is the influence of heat stress on cattle. The impact of hot weather on cattle is of increasing importance due to the changing global environment. Heat stress is a worldwide phenomenon that is associated with reduced animal productivity and welfare, particularly during the summer months. Animal responses to their thermal environment are extremely varied, however, it is clear that the thermal environment influences the health, productivity, and welfare of cattle. Whilst knowledge continues to be developed, managing livestock to reduce the negative impact of hot climatic conditions remains somewhat challenging. This review provides an overview of the impact of heat stress on production and reproduction in bovines.
Animals arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ani9060322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 168 citations 168 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Animals arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ani9060322&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, FrancePublisher:Informa UK Limited Wassmann, Reiner; Pasco R;Zerrudo J;
Ngo DM; Vo TBT; Sander, Björn Ole;Zerrudo J
Zerrudo J in OpenAIREhandle: 10568/100183
The new GHG calculator named SECTOR (Source-selective and Emission-adjusted GHG CalculaTOR for Cropland) is based on the IPCC Tier 2 approach for rice as well as other crops. The new features of SECTOR facilitate high flexibility in terms of entering newly obtained emission factors, easy data transfer from crop statistics for entering activity data and detailed specifications of GHG scenarios. A new procedure of entering frequency-based data on current water management practices was also developed. Moreover, the tool allows deviating from the 2006 IPCC Guidelines by considering field records with high background levels of N₂O emissions in the overall assessment of GHG emissions. This article assesses different applications of the tool, namely as add-ons to field measurements, for GHG calculation at national/sectorial scale and within measurement, reporting and verification of development projects. SECTOR is downloadable in the form of templates that can be used to develop custom versions with varying levels of disaggregated data entries at different scales. A case study for rice production in one Vietnamese province demonstrates the potential to display GHG results in combination with GIS. SECTOR can easily be adjusted to incorporate new emission factors and calculation procedures expected in forthcoming revisions of the IPCC Guidelines.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/100183Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1553436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/100183Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17583004.2018.1553436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United StatesPublisher:Elsevier BV Authors: Sumit Sharma; Nithya Rajan;Song Cui;
Song Cui
Song Cui in OpenAIREKenneth Casey;
+3 AuthorsKenneth Casey
Kenneth Casey in OpenAIRESumit Sharma; Nithya Rajan;Song Cui;
Song Cui
Song Cui in OpenAIREKenneth Casey;
Kenneth Casey
Kenneth Casey in OpenAIRESrinivasulu Ale;
Srinivasulu Ale
Srinivasulu Ale in OpenAIRERussell Jessup;
Stephen Maas;Russell Jessup
Russell Jessup in OpenAIREhandle: 11244/335095
Abstract The eddy covariance method was used to investigate carbon fluxes and evapotranspiration (ET) from a high biomass forage sorghum ( Sorghum bicolor L.) field in the Southern U.S. Great Plains for three growing seasons (2013–2015). Above normal precipitation and narrow row spacing (50 cm) led to higher biomass production (25 Mg ha −1 ) and leaf area index (LAI = 7.2) development in 2014. This also resulted in higher carbon uptake or net ecosystem production (NEP) and ET during that year. Early and late season precipitation enhanced ecosystem respiration (R eco ) resulting in lower NEP in 2015. Shorter growing season (119 days) also contributed to lower cumulative NEP in 2015. Estimated gross primary production (GPP) in 2014 (1780 g m −2 ) was 10% higher than the GPP in 2013 (1591 g m −2 ) and 24% higher than the GPP in 2015 (1353 g m −2 ). During all growing seasons, the site was a source of carbon (negative NEP) at the beginning and transitioned to a sink (positive NEP) later in the season. Biomass-GPP relationship indicated that approximately 65% of total GPP was allocated to above ground biomass (AGB). Average monthly ecosystem WUE (expressed as gross carbon gain per unit of ET) ranged from 1.7 g mm −1 to 4.2 g mm −1 . Results from our study indicate that weather conditions, growing season length and crop management are important factors in determining the magnitude of carbon uptake and release, and ET of this cellulosic biofuel feedstock crop in the Southern U.S. Great Plains.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.07.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 United StatesPublisher:Public Library of Science (PLoS) Hui Tian; Hui Wang; Xiaoli Hui; Zhaohui Wang; Rhae A. Drijber;Jinshan Liu;
Jinshan Liu
Jinshan Liu in OpenAIREAgricultural management methods, such as cultivation or fallowing, have led to significant changes in soil fertility and hence, crop yield. Such changes may have stemmed from changes in soil microbial communities and associated biogeochemical processes. This phenomenon is particularly true in organic-poor soil in the Loess Plateau of China. In this study, we examined three existing soil management regimes as part of a 10-year field experiment and evaluated their effects on fungal and bacterial community structures by performing high-throughput 454 pyrosequencing. These management regimes were (i) fertilized winter wheat (Triticum aestivum L.) (FW), (ii) continuous natural fallow with weeds but without crop grown (NF), and (iii) continuous bare fallow without weeds or crop grown (BF). After 10 years, soil organic carbon (SOC), microbial biomass carbon (MBC), and available potassium (K) concentrations were highest in NF. Soil N behaved differently, with BF obtaining the highest nitrate nitrogen (N). Meanwhile, slight differences in total N (TN) were observed among FW, NF, and BF. Available phosphorus (P) was highest and available K was lowest in FW. Microbial communities were dominated by Ascomycota (59.1% of fungal sequences), and Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria (75.7% of bacterial sequences) in FW, NF and BF at the phylum level. Soil management regimes did not affect the fungal and bacterial richness and diversity but significantly modified their community compositions. Compared with FW, the abundances of Ascomycota (fungi phylum) and Alternaria, Gibberella, and Emericella (fungi genus) were increased by NF, whereas the values of Chaetomium, Humicola, and Cryptococcus (fungi genus) were decreased by BF. The abundances of Verrucomicrobia (bacteria phylum), and Steroidobacter (bacteria genus) were increased by NF, and Bacteroides (bacteria genus) was increased by BF. Canonical correspondence analysis showed that SOC, available P, and TN might be the key factors in community formation. Therefore, the decadal absence of plants (BF) affected soil fertility by increased available K and nitrate N, whileas natural fallow (NF) affected soil fertility by increased SOC, available K, and MBC, and they all changed fungal and bacterial community compositions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0184223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0184223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 FrancePublisher:MDPI AG Authors:Kennedy Masamba;
Wisdom Changadeya; Pheneas Ntawuruhunga; Pilirani Pankomera; +2 AuthorsKennedy Masamba
Kennedy Masamba in OpenAIREKennedy Masamba;
Wisdom Changadeya; Pheneas Ntawuruhunga; Pilirani Pankomera;Kennedy Masamba
Kennedy Masamba in OpenAIREWillard Mbewe;
Willard Mbewe
Willard Mbewe in OpenAIREFelistus Chipungu;
Felistus Chipungu
Felistus Chipungu in OpenAIREdoi: 10.3390/su14052719
handle: 10568/119172
Cassava utilisation in Malawi is negatively affected by rapid deterioration of fresh roots, primarily caused by postharvest physiological deterioration (PPD). A study was conducted to assess farmers’ knowledge and approaches used to minimize losses from PPD. Multi-stage sampling was used to identify districts, Extension Planning Areas (EPA’s) and farmers. Data were collected from 519 farmers using a structured questionnaire. Results revealed that PPD (74.0%) was the major post-harvest constraint followed by pests and diseases (62.1%). Farmers had varying knowledge levels on signs and causes of PPD. They were knowledgeable on PPD signs with 91.5% ably identifying PPD through change of pulp colour. The farmers also had moderate knowledge on causes of PPD, citing high temperature (57.6%) and over-staying of roots (56.2%) as main causes of PPD. Key methods for preventing PPD are: storage (43.0%) and piece-meal harvesting (40.4%). Only 2.6% of the farmers exploited varietal difference in dealing with PPD as some varieties (Sauti, Mpuma, Ching’amba, and Kalasa) take three to five days before showing PPD signs. Farmers’ knowledge levels and PPD preventive methods could be strengthened through: provision of training on post-harvest handling, improvement in storage and processing technologies; and application of advanced breeding techniques to exploit genetic variation in cassava germplasm.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2719/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119172Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2719/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/119172Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 BrazilPublisher:Elsevier BV Authors:João Carlos de Moraes Sá;
Rattan Lal; Carlos Clemente Cerri;João Carlos de Moraes Sá
João Carlos de Moraes Sá in OpenAIREKlaus Lorenz;
+2 AuthorsKlaus Lorenz
Klaus Lorenz in OpenAIREJoão Carlos de Moraes Sá;
Rattan Lal; Carlos Clemente Cerri;João Carlos de Moraes Sá
João Carlos de Moraes Sá in OpenAIREKlaus Lorenz;
Mariangela Hungria;Klaus Lorenz
Klaus Lorenz in OpenAIREPaulo Cesar de Faccio Carvalho;
Paulo Cesar de Faccio Carvalho
Paulo Cesar de Faccio Carvalho in OpenAIREThe worldwide historical carbon (C) losses due to Land Use and Land-Use Change between 1870 and 2014 are estimated at 148 Pg C (1 Pg=1billionton). South America is chosen for this study because its soils contain 10.3% (160 Pg C to 1-m depth) of the soil organic carbon stock of the world soils, it is home to 5.7% (0.419 billion people) of the world population, and accounts for 8.6% of the world food (491milliontons) and 21.0% of meat production (355milliontons of cattle and buffalo). The annual C emissions from fossil fuel combustion and cement production in South America represent only 2.5% (0.25 Pg C) of the total global emissions (9.8 Pg C). However, South America contributes 31.3% (0.34 Pg C) of global annual greenhouse gas emissions (1.1 Pg C) through Land Use and Land Use Change. The potential of South America as a terrestrial C sink for mitigating climate change with adoption of Low-Carbon Agriculture (LCA) strategies based on scenario analysis method is 8.24 Pg C between 2016 and 2050. The annual C offset for 2016 to 2020, 2021 to 2035, and 2036 to 2050 is estimated at 0.08, 0.25, and 0.28 Pg C, respectively, equivalent to offsetting 7.5, 22.2 and 25.2% of the global annual greenhouse gas emissions by Land Use and Land Use Change for each period. Emission offset for LCA activities is estimated at 31.0% by restoration of degraded pasturelands, 25.6% by integrated crop-livestock-forestry-systems, 24.3% by no-till cropping systems, 12.8% by planted commercial forest and forestation, 4.2% by biological N fixation and 2.0% by recycling the industrial organic wastes. The ecosystem carbon payback time for historical C losses from South America through LCA strategies may be 56 to 188years, and the adoption of LCA can also increase food and meat production by 615Mton or 17.6Mtonyear-1 and 56Mton or 1.6Mtonyear-1, respectively, between 2016 and 2050.
Universidade Estadua... arrow_drop_down Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Environment InternationalArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2016.10.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 190 citations 190 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Universidade Estadua... arrow_drop_down Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Environment InternationalArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envint.2016.10.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu