- home
- Advanced Search
- Energy Research
- Closed Access
- US
- GB
- CA
- Applied Energy
- Energy Research
- Closed Access
- US
- GB
- CA
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Raymond L. Huhnke; Hailin Zhang; Xiao Sun; Hasan K. Atiyeh; Ralph S. Tanner;Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Raymond R. Tan; Jose B. Cruz; Alvin B. Culaba; Jo-Anne B. Ballacillo;Abstract This paper presents a novel multi-time-stage input–output-based modeling framework for simulating the dynamics of bioenergy supply chains. One of the key assumptions used in the model is that the production level at the next time-stage of each segment of the energy supply chain adjusts to the output surplus or deficit relative to targets at the current time period. Furthermore, unlike conventional input–output models, the technology matrix in this approach need not be square, and thus can include coefficients denoting flows of environmental goods, such as natural resources or pollutants. Introducing a feedback control term enables the system to regulate the dynamics, thus extending the model further. This is an important feature since the uncontrolled dynamic model exhibits oscillatory or unstable behavior under some conditions; in principle, the control term allows such undesirable characteristics to be suppressed. Numerical simulations of a simple, two-sector case study are given to illustrate dynamic behavior under different scenarios. Although the case study uses only a hypothetical system, preliminary comparisons are made between the simulation results and some broad trends seen in real bioenergy systems. Finally, some of the main policy implications of the model are discussed based on the general dynamic characteristics seen in the case study. In particular, insights from control theory can be used to develop policy interventions to impart desirable dynamic characteristics to nascent or emerging biofuel supply chains. These interventions can be used to guide the growth of bioenergy supplies along final demand trajectories with minimal fluctuation and no instability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Somil Yadav; Caroline Hachem-Vermette;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: R. Lips; S.D. Probert; L. M. Daly;Abstract In a trial, 10 cucumber plants ( Cucumis sativus , variety ‘Virgo’ F 1 hybrids) were exposed continuously to a concentration of negative air ions exceeding 50 000/c.c. for a period of 40 days. The yield and productivity of the treated plants were compared with those of a control group of 10 plants in a matched-pairs experiment. An Index of Initial Vigour was developed to allow the subsequent production of the previously nursery-grown young plants to be related to their condition at the beginning of the trial. No effect on the total production or productivity at the end of the 40-day period was discerned, but the interim results (e.g. for the 10th day) are consistent with a model of reaction to stress governed by a negative-feedback mechanism. No harmful effects of the use of negatively ionised air were detected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(87)90036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(87)90036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Elsevier BV Authors: M.J. Shilston; S.D. Probert; K. Jambunathan;Abstract The almost two-dimensional steady-state rates of heat loss from arrays of uniformly-spaced vertical rectangular fins, extending upwards—in otherwise stagnant air—from horizontal heated bases, have been measured. (The vertical air gaps between the fins were closed at their sides, by insulated vertical end-barriers.) The effects of various combinations of height, thickness and spacing of the fins, for different base temperatures (in the range 40 to 100°C), have been studied. For the configuration considered, in a normal ambient environment (∼ 20°C), there is an optimal fin spacing (⋍ 16 mm) corresponding to the greatest steady-state rate of free convective/conductive heat loss through the air from the finned system, and this is almost independent of the temperature of the heat exchanger base (in the range 40–100°C). At this optimal spacing for base temperatures not greater than 50°C, the convective/conductive heat transfer rate from the array increases with the fin height up to about 60 mm, so that it would be uneconomic to employ taller fins if convection/conduction is dominant compared with radiation. If the radiation contribution is also considered, then the optimal spacing corresponding to the maximum total steady-state rate of heat loss through the air is somewhat less than the optimal spacing for which, under the same temperature conditions, the maximum steady-state rate of convective/conductive heat leak occurs. The greater the emissivity of the heat exchanger surfaces, the narrower the optimal uniform gaps between the fins. A two-dimensional finite-difference computer program has been composed to predict the temperature distribution throughout the heat exchanger for a stipulated ambient environmental temperature and experimentally-determined distribution of the heat transfer coefficient over the surfaces of the exchanger. This enables, for instance, any hot spots to be located prior to a proposed design being built.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(84)90039-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(84)90039-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Vincenzo Iannino; Stefano Dettori; Annamaria Signorini; Valentina Colla;Abstract In Concentrated Solar Power Plants, steam turbines controlled with standard Proportional Integrative Derivative (PID) methods may suffer from performance downgrading in power generation when the steam conditions deviate from nominal ones. An enhancement of standard steam turbine controller can be the key to achieve optimal performance also in non-nominal steam conditions. This paper presents the improvement of the PID control concept by exploiting Fuzzy Logic, an artificial intelligence technique that allows taking into account the human experience and knowledge on the system behavior. A real Concentrated Solar Power Plant has been modeled focusing on generated power control loop, its stability and performance analysis, knowledge useful to design a Fuzzy Inference System. A fuzzy logic controller is proposed to continuously adapt the PID parameters, to improve the steam turbine governor action. Its performance is compared to the classical PID tuned according to three different approaches. The fuzzy logic PID controller extends the simplicity of PID and adapts the control action to actual operating condition by providing the system with a sort of “decision-making skill”. The possibility to design implementable algorithms on a Programmable Logic Controller, which have stringent computational speed and memory requirements, has been explicitly taken into account in the developed work, through the minimization of the controller complexity with a reduced number of fuzzy sets and fuzzy rules within the fuzzy inference system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ayman Elshkaki; Thomas E. Graedel;Abstract Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is covered by critical REE rich deposits or Dy rich deposits, the increase in Dy demand results in an oversupply of Ce and Y only, while the demand for Nd and La exceeds their supply. In the case of an oversupply of REEs, the environmental impacts associated with the REEs production should be allocated to Dy and consequently to the technologies that utilize the metal. The results also show that very large quantities of thorium will be co-produced as a result of the demand for Dy. The thorium would need to be carefully disposed of, or significant thorium applications would need to be found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Kuan Chen; Wongee Chun;Abstract Radiation energy transfer is modeled as the enthalpy flux of photons across the boundary of a thermodynamic system. It is proved that this energy transfer process can be treated as heat transfer. Compression work must be applied to the system to push the photons out. The energy transfer rate and maximum conversion efficiency computed from the model are identical to those determined from the Stefan–Boltzmann law and the Carnot efficiency for blackbody radiation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Raphael J. Heffron; Raphael J. Heffron; Darren McCauley;handle: 1893/18338
This paper describes the nexus of energy justice, supply and security. It advances the case that energy justice is the relatively new concept in this triangle of issues and an area requiring research. There are three central tenets of energy justice: distributional, procedural and recognition justice. Each of these tenets figures at certain stages in the energy supply chain and as a consequence there is an effect on energy supply. An example of the wind energy sector in Denmark is presented which demonstrates how the application and promotion of energy justice can enable the growth of an industry supply chain. This in turn contributes to increased energy security and national economic growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Choongwan Koo; Taehoon Hong; Jeongyoon Oh; Jun-Ki Choi;Abstract As interest in the distributed generation of solar power system in a building facade continues to increase, its technical performance (i.e. the amount of electricity generation) should be carefully investigated before its implementation. In this regard, this study aimed to develop the nine-node-based finite element model for estimating the technical performance of the distributed generation of solar power system in a building facade (FEM9-node), focusing on the improvement of the prediction performance. The developed model (FEM9-node) was proven to be superior to the four-node-based model (FEM4-node), which was developed in the previous study, in terms of both prediction accuracy and standard deviation. In other words, the prediction accuracy (3.55%) and standard deviation (2.93%) of the developed model (FEM9-node) was determined to be superior to those of the previous model (FEM4-node) (i.e. 4.54% and 4.39%, respectively). The practical application was carried out to enable a decision maker (e.g. construction manager, facility manager) to understand how the developed model works in a clear way. It is expected that the developed model (FEM9-node) can be used in the early design phase in an easy way within a short time. In addition, it could be extended to any other countries in a global environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Raymond L. Huhnke; Hailin Zhang; Xiao Sun; Hasan K. Atiyeh; Ralph S. Tanner;Abstract Microorganisms used in syngas fermentation require nutrients to grow and convert syngas (CO, H2 and CO2) into various products. Many of the essential nutrients can be provided by biochar. Poultry litter biochar (PLBC) contains minerals and trace metals and has a high pH buffering capacity, making it suitable as a nutrient supplement. The effects of PLBC loadings from 1 to 20 g L−1 on syngas fermentation were determined in 250 ml bottle assays. Results showed that 10 and 20 g L−1 PLBC significantly increased ethanol production compared to standard yeast extract (YE) medium. Fermentations in a 3L continuous stirred tank reactor (CSTR) with 10 g L−1 PLBC with and without 4-morpholineethanesulfonic acid (MES) showed 64% and 36% more ethanol production, respectively, than standard medium. The acetic acid accumulated at the beginning of fermentation was completely converted to ethanol in all media tested in the CSTR. These results demonstrate the feasibility of using PLBC medium without costly MES in the CSTR to enhance ethanol production from syngas for potential use at commercial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.12.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Raymond R. Tan; Jose B. Cruz; Alvin B. Culaba; Jo-Anne B. Ballacillo;Abstract This paper presents a novel multi-time-stage input–output-based modeling framework for simulating the dynamics of bioenergy supply chains. One of the key assumptions used in the model is that the production level at the next time-stage of each segment of the energy supply chain adjusts to the output surplus or deficit relative to targets at the current time period. Furthermore, unlike conventional input–output models, the technology matrix in this approach need not be square, and thus can include coefficients denoting flows of environmental goods, such as natural resources or pollutants. Introducing a feedback control term enables the system to regulate the dynamics, thus extending the model further. This is an important feature since the uncontrolled dynamic model exhibits oscillatory or unstable behavior under some conditions; in principle, the control term allows such undesirable characteristics to be suppressed. Numerical simulations of a simple, two-sector case study are given to illustrate dynamic behavior under different scenarios. Although the case study uses only a hypothetical system, preliminary comparisons are made between the simulation results and some broad trends seen in real bioenergy systems. Finally, some of the main policy implications of the model are discussed based on the general dynamic characteristics seen in the case study. In particular, insights from control theory can be used to develop policy interventions to impart desirable dynamic characteristics to nascent or emerging biofuel supply chains. These interventions can be used to guide the growth of bioenergy supplies along final demand trajectories with minimal fluctuation and no instability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Authors: Somil Yadav; Caroline Hachem-Vermette;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.122076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1987Publisher:Elsevier BV Authors: R. Lips; S.D. Probert; L. M. Daly;Abstract In a trial, 10 cucumber plants ( Cucumis sativus , variety ‘Virgo’ F 1 hybrids) were exposed continuously to a concentration of negative air ions exceeding 50 000/c.c. for a period of 40 days. The yield and productivity of the treated plants were compared with those of a control group of 10 plants in a matched-pairs experiment. An Index of Initial Vigour was developed to allow the subsequent production of the previously nursery-grown young plants to be related to their condition at the beginning of the trial. No effect on the total production or productivity at the end of the 40-day period was discerned, but the interim results (e.g. for the 10th day) are consistent with a model of reaction to stress governed by a negative-feedback mechanism. No harmful effects of the use of negatively ionised air were detected.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(87)90036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(87)90036-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1984Publisher:Elsevier BV Authors: M.J. Shilston; S.D. Probert; K. Jambunathan;Abstract The almost two-dimensional steady-state rates of heat loss from arrays of uniformly-spaced vertical rectangular fins, extending upwards—in otherwise stagnant air—from horizontal heated bases, have been measured. (The vertical air gaps between the fins were closed at their sides, by insulated vertical end-barriers.) The effects of various combinations of height, thickness and spacing of the fins, for different base temperatures (in the range 40 to 100°C), have been studied. For the configuration considered, in a normal ambient environment (∼ 20°C), there is an optimal fin spacing (⋍ 16 mm) corresponding to the greatest steady-state rate of free convective/conductive heat loss through the air from the finned system, and this is almost independent of the temperature of the heat exchanger base (in the range 40–100°C). At this optimal spacing for base temperatures not greater than 50°C, the convective/conductive heat transfer rate from the array increases with the fin height up to about 60 mm, so that it would be uneconomic to employ taller fins if convection/conduction is dominant compared with radiation. If the radiation contribution is also considered, then the optimal spacing corresponding to the maximum total steady-state rate of heat loss through the air is somewhat less than the optimal spacing for which, under the same temperature conditions, the maximum steady-state rate of convective/conductive heat leak occurs. The greater the emissivity of the heat exchanger surfaces, the narrower the optimal uniform gaps between the fins. A two-dimensional finite-difference computer program has been composed to predict the temperature distribution throughout the heat exchanger for a stipulated ambient environmental temperature and experimentally-determined distribution of the heat transfer coefficient over the surfaces of the exchanger. This enables, for instance, any hot spots to be located prior to a proposed design being built.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(84)90039-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(84)90039-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Vincenzo Iannino; Stefano Dettori; Annamaria Signorini; Valentina Colla;Abstract In Concentrated Solar Power Plants, steam turbines controlled with standard Proportional Integrative Derivative (PID) methods may suffer from performance downgrading in power generation when the steam conditions deviate from nominal ones. An enhancement of standard steam turbine controller can be the key to achieve optimal performance also in non-nominal steam conditions. This paper presents the improvement of the PID control concept by exploiting Fuzzy Logic, an artificial intelligence technique that allows taking into account the human experience and knowledge on the system behavior. A real Concentrated Solar Power Plant has been modeled focusing on generated power control loop, its stability and performance analysis, knowledge useful to design a Fuzzy Inference System. A fuzzy logic controller is proposed to continuously adapt the PID parameters, to improve the steam turbine governor action. Its performance is compared to the classical PID tuned according to three different approaches. The fuzzy logic PID controller extends the simplicity of PID and adapts the control action to actual operating condition by providing the system with a sort of “decision-making skill”. The possibility to design implementable algorithms on a Programmable Logic Controller, which have stringent computational speed and memory requirements, has been explicitly taken into account in the developed work, through the minimization of the controller complexity with a reduced number of fuzzy sets and fuzzy rules within the fuzzy inference system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ayman Elshkaki; Thomas E. Graedel;Abstract Wind power technology is one of the cleanest electricity generation technologies that are expected to have a substantial share in the future electricity mix. Nonetheless, the expected increase in the market share of wind technology has led to an increasing concern of the availability, production capacity and geographical concentration of the metals required for the technology, especially the rear earth elements (REE) neodymium (Nd) and the far less abundant dysprosium (Dy), and the impacts associated with their production. Moreover, Nd and Dy are coproduced with other rare earth metals mainly from iron, titanium, zirconium, and thorium deposits. Consequently, an increase in the demand for Nd and Dy in wind power technology and in their traditional applications may lead to an increase in the production of the host metals and other companion REE, with possible implications on their supply and demand. In this regard, we have used a dynamic material flow and stock model to study the impacts of the increasing demand for Nd and Dy on the supply and demand of the host metals and other companion REE. In one scenario, when the supply of Dy is covered by all current and expected producing deposits, the increase in the demand for Dy leads to an oversupply of 255 Gg of total REE and an oversupply of the coproduced REE Nd, La, Ce and Y. In the second and third scenarios, however, when the supply of Dy is covered by critical REE rich deposits or Dy rich deposits, the increase in Dy demand results in an oversupply of Ce and Y only, while the demand for Nd and La exceeds their supply. In the case of an oversupply of REEs, the environmental impacts associated with the REEs production should be allocated to Dy and consequently to the technologies that utilize the metal. The results also show that very large quantities of thorium will be co-produced as a result of the demand for Dy. The thorium would need to be carefully disposed of, or significant thorium applications would need to be found.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 97 citations 97 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Kuan Chen; Wongee Chun;Abstract Radiation energy transfer is modeled as the enthalpy flux of photons across the boundary of a thermodynamic system. It is proved that this energy transfer process can be treated as heat transfer. Compression work must be applied to the system to push the photons out. The energy transfer rate and maximum conversion efficiency computed from the model are identical to those determined from the Stefan–Boltzmann law and the Carnot efficiency for blackbody radiation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2008.11.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Raphael J. Heffron; Raphael J. Heffron; Darren McCauley;handle: 1893/18338
This paper describes the nexus of energy justice, supply and security. It advances the case that energy justice is the relatively new concept in this triangle of issues and an area requiring research. There are three central tenets of energy justice: distributional, procedural and recognition justice. Each of these tenets figures at certain stages in the energy supply chain and as a consequence there is an effect on energy supply. An example of the wind energy sector in Denmark is presented which demonstrates how the application and promotion of energy justice can enable the growth of an industry supply chain. This in turn contributes to increased energy security and national economic growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Choongwan Koo; Taehoon Hong; Jeongyoon Oh; Jun-Ki Choi;Abstract As interest in the distributed generation of solar power system in a building facade continues to increase, its technical performance (i.e. the amount of electricity generation) should be carefully investigated before its implementation. In this regard, this study aimed to develop the nine-node-based finite element model for estimating the technical performance of the distributed generation of solar power system in a building facade (FEM9-node), focusing on the improvement of the prediction performance. The developed model (FEM9-node) was proven to be superior to the four-node-based model (FEM4-node), which was developed in the previous study, in terms of both prediction accuracy and standard deviation. In other words, the prediction accuracy (3.55%) and standard deviation (2.93%) of the developed model (FEM9-node) was determined to be superior to those of the previous model (FEM4-node) (i.e. 4.54% and 4.39%, respectively). The practical application was carried out to enable a decision maker (e.g. construction manager, facility manager) to understand how the developed model works in a clear way. It is expected that the developed model (FEM9-node) can be used in the early design phase in an easy way within a short time. In addition, it could be extended to any other countries in a global environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.01.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu