- home
- Advanced Search
- Energy Research
- CA
- IT
- Energy Research
- CA
- IT
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Authors: Uniben Yao Ayikoe Tettey; Leif Gustavsson;Abstract In this study, we analyse and compare the primary energy use and carbon dioxide (CO2) emissions associated with different insulation, cladding and frame materials for a constructed concrete frame multi-storey residential building in Sweden. Our approach consists of identifying individual materials giving the lowest primary energy use and CO2 emissions for each building envelope part and based on that, modelling different material combinations to achieve improved alternatives of the concrete frame building with the same operation energy use based on the Swedish building code or passive house criteria. We analyse the complete materials and energy chains, including material losses as well as conversion and fuel cycle losses. The analysis covers the primary energy use to extract, process, transport, and assemble the materials and the resulting CO2 emissions to the atmosphere. The results show wide variations in primary energy and CO2 emissions depending on the choice of building envelope materials. The materials for external walls contribute most to the primary energy and CO2 emissions, followed by foundation, roof and external cladding materials. The improved building alternatives with wood construction frames, wood external cladding, expanded polystyrene as foundation insulation and cellulose insulation in the external walls and roof result in about 36 - 40% lower production primary energy use and 42 – 49% lower CO2 emissions than the improved concrete alternative when achieving the same thermal performance. This study suggests that strategies for low-energy buildings should be combined with resource-efficient and low carbon materials in the production phase to mitigate climate change and achieve a sustainable built environment.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/297/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/297/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Uniben Yao Ayikoe Tettey; Ambrose Dodoo; Leif Gustavsson;Abstract Primary energy implications over the life cycle of a multi storey residential building with different building systems are explored here. The main structural materials of the buildings include precast concrete, cross laminated timber (CLT) and prefabricated timber modules (modular). The analysis covers energy and material flows from different life cycle phases of the building versions, designed to meet the energy performance of the Swedish building code (BBR) and passive house criteria. The CLT and modular buildings were found to result in lower production primary energy use and higher biomass residues compared to the concrete alternative. The heating value of the recoverable biomass residues from the production phase of the CLT building is significantly larger than the primary energy required for its production. Primary energy use for production and construction constitutes 20–30% and 36–47% of the total primary energy use for production, construction, space heating, ventilation and demolition for the BBR and passive buildings, respectively. Space heating with combined heat and power (CHP) and ventilation electricity for the BBR and passive building versions form 70–79% and 52–63%, respectively, of the total primary energy use for production, construction, space heating, ventilation and demolition for a lifespan of 80 years. The CLT and modular buildings give 20–37% and 9–17% lower total life cycle primary energy use, respectively, than the concrete alternative when space heating is from CHP.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Uniben Yao Ayikoe Tettey; Ambrose Dodoo; Leif Gustavsson;In this study, we explored the effects of different design strategies on final and primary energy use for production and operation of a newly constructed apartment building. We analysed alternatives of the building “As built” as well as to energy efficiency levels of the Swedish building code and passive house criteria. Our approach is based on achieving improved versions of the building alternatives from combination of design strategies giving the lowest space heating and cooling demand and primary energy use, respectively. We found that the combination of design strategies resulting in the improved building alternatives varies depending on the approach. The improved building alternatives gave up to 19–34% reduction in operation primary energy use compared to the initial alternatives. The share of production primary energy use of the improved building alternatives was 39–54% of the total primary energy use for production, space heating, space cooling and ventilation over 50-year lifespan, compared to 31–42% for the initial alternatives. This study emphasises the importance of incorporating appropriate design strategies to reduce primary energy use for building operation and suggests that combining such strategies with careful choice of building frame materials could result in significant primary energy savings in the built environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.03.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.03.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Leif Gustavsson; Uniben Yao Ayikoe Tettey;Abstract Here, we analyse final and primary energy savings and overheating risk of deep energy renovation of a Swedish multi-storey residential building of the 1970s under climate change and consider overheating control measures to reduce cooling demand and risk of overheating. The energy-efficiency measures include additional insulation to basement walls, exterior walls, and attic floor as well as improved energy-efficient windows and doors, balanced ventilation with heat recovery (VHR), lighting, household appliances as well as water taps and shower heads. The future climates are based on the representative concentration pathways scenarios. We find that implementing improved energy-efficient windows and doors, VHR and additional insulation to external walls give significant final and primary energy savings for space heating. The total operation final and primary energy use decrease averagely by 58% and 54%, respectively when all the measures are cumulatively applied under both current and future climate scenarios. Efficient household appliances and lighting as well as appropriate overheating control measures significantly reduce cooling demand and risk of overheating. The indoor air temperature and overheating risk as well as the final energy savings are influenced by the considered climate scenarios.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Uniben Yao Ayikoe Tettey; Ambrose Dodoo; Leif Gustavsson;The effects of climate change on the final and primary energy use of versions of a multi-storey residential building have been analysed. The building versions are designed to the Swedish building code (BBR 2015) and passive house criteria (Passive 2012) with different design and overheating control strategies under different climate scenarios. Future climate datasets are based on Representative Concentration Pathway scenarios for 2050–2059 and 2090–2099. The analysis showed that strategies giving the lowest space heating and cooling demands for the Passive 2012 building version remained the same under all climate scenarios. In contrast, strategies giving the lowest space heating and cooling demands for the BBR 2015 version varied, as cooling demand became more significant under future climate scenarios. Cooling demand was more dominant than heating for the Passive 2012 building version under future climate scenarios. Household equipment and technical installations based on best available technology gave the biggest reduction in total primary energy use among considered strategies. Overall, annual total operation primary energy decreased by 37–54% for the building versions when all strategies are implemented under the considered climate scenarios. This study shows that appropriate design strategies could result in significant primary energy savings for low-energy buildings under changing climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Chiara Piccardo; Ambrose Dodoo; Leif Gustavsson; Uniben Tettey;Abstract The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ambrose Dodoo; Leif Gustavsson; Uniben Yao Ayikoe Tettey;In this study, we analyzed the implications of various insulation materials on the primary energy and CO2emission for material production of a residential building. We modeled changes to the origin ...
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ambrose Dodoo; Uniben Yao Ayikoe Tettey; Leif Gustavsson;AbstractIn this study, we investigate the influence of different external wall insulation systems on the primary energy use of a case study building in southern Sweden. We vary the insulation material of the external walls from rock wool to glass wool or expanded polystyrene (EPS) to achieve different energy-efficiency standards of the building. We apply appropriate thicknesses of the different insulation materials to achieve similar thermal transmittance (U-value) of the external walls under the different energy-efficiency standards. The different options are based on the same architectural design. We calculate and compare the primary energy for production of the insulation materials and for operation of the buildings. Rock wool gives the lowest primary energy for production, followed by glass wool and EPS for each energy efficiency standard, although the difference between rock wool and glass wool is small.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Authors: Chiara Piccardo; Uniben Yao Ayikoe Tettey; Leif Gustavsson; Ambrose Dodoo;The existing building stock is estimated to need major renovations in the near future. At the same time, the EU energy-efficiency strategy entails upgrading the energy performance of renovated buildings to meet the nearly-zero energy standard. To upgrade existing buildings, two main groups of measures can be adopted: thermally-improved building envelope and energy-efficient technical devices. The first measure usually involves additional building materials for thermal insulation and new building cladding, as well as new windows and doors. A number of commercially-available materials can be used to renovate thermal building envelopes. This study compares the life-cycle primary energy use and CO2 emission when renovating an existing building using different materials, commonly used in renovated buildings. A Swedish building constructed in 1972 is used as a case-study building. The building's envelope is assumed to be renovated to meet the Swedish passive house standard. The entire life cycle of the building envelope renovation is taken into account. The results show that the selection of building materials can significantly reduce the production primary energy and associated CO2 emissions by up to 62% and 77%, respectively. The results suggest that a careful material choice can significantly contribute to reduce primary energy use and CO2 emissions associated with energy renovation of buildings, especially when renewable-based materials are used.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/225/1/012044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/225/1/012044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:Springer Science and Business Media LLC Authors: Ambrose Dodoo; Uniben Yao Ayikoe Tettey; Leif Gustavsson;Here, the implications of different design strategies and measures in minimising the heating and cooling demands of a multi-storey residential building, designed to the passive house criteria in Southern Sweden are analysed under different climate change scenarios. The analyses are conducted for recent (1996–2005) and future climate periods of 2050–2059 and 2090–2099 based on the Representative Concentration Pathway scenarios, downscaled to conditions in Southern Sweden. The considered design strategies and measures encompass efficient household equipment and technical installations, bypass of ventilation heat recovery unit, solar shading of windows, window size and properties, building orientation and mechanical cooling. Results show that space heating demand reduces, while cooling demand as well as risk of overheating increases under future climate scenarios. The most important design strategies and measures are efficient household equipment and technical installations, solar shading, bypass of ventilation heat recovery unit and window U-values and g-values. Total annual final energy demand decreased by 40–51%, and overheating is avoided or significantly reduced under the considered climate scenarios when all the strategies are implemented. Overall, the total annual primary energy use for operation decreased by 42–54%. This study emphasises the importance of considering different design strategies and measures in minimising the operation energy use and potential risks of overheating in low-energy residential buildings under future climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9719-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9719-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Authors: Uniben Yao Ayikoe Tettey; Leif Gustavsson;Abstract In this study, we analyse and compare the primary energy use and carbon dioxide (CO2) emissions associated with different insulation, cladding and frame materials for a constructed concrete frame multi-storey residential building in Sweden. Our approach consists of identifying individual materials giving the lowest primary energy use and CO2 emissions for each building envelope part and based on that, modelling different material combinations to achieve improved alternatives of the concrete frame building with the same operation energy use based on the Swedish building code or passive house criteria. We analyse the complete materials and energy chains, including material losses as well as conversion and fuel cycle losses. The analysis covers the primary energy use to extract, process, transport, and assemble the materials and the resulting CO2 emissions to the atmosphere. The results show wide variations in primary energy and CO2 emissions depending on the choice of building envelope materials. The materials for external walls contribute most to the primary energy and CO2 emissions, followed by foundation, roof and external cladding materials. The improved building alternatives with wood construction frames, wood external cladding, expanded polystyrene as foundation insulation and cellulose insulation in the external walls and roof result in about 36 - 40% lower production primary energy use and 42 – 49% lower CO2 emissions than the improved concrete alternative when achieving the same thermal performance. This study suggests that strategies for low-energy buildings should be combined with resource-efficient and low carbon materials in the production phase to mitigate climate change and achieve a sustainable built environment.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/297/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/297/1/012020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Uniben Yao Ayikoe Tettey; Ambrose Dodoo; Leif Gustavsson;Abstract Primary energy implications over the life cycle of a multi storey residential building with different building systems are explored here. The main structural materials of the buildings include precast concrete, cross laminated timber (CLT) and prefabricated timber modules (modular). The analysis covers energy and material flows from different life cycle phases of the building versions, designed to meet the energy performance of the Swedish building code (BBR) and passive house criteria. The CLT and modular buildings were found to result in lower production primary energy use and higher biomass residues compared to the concrete alternative. The heating value of the recoverable biomass residues from the production phase of the CLT building is significantly larger than the primary energy required for its production. Primary energy use for production and construction constitutes 20–30% and 36–47% of the total primary energy use for production, construction, space heating, ventilation and demolition for the BBR and passive buildings, respectively. Space heating with combined heat and power (CHP) and ventilation electricity for the BBR and passive building versions form 70–79% and 52–63%, respectively, of the total primary energy use for production, construction, space heating, ventilation and demolition for a lifespan of 80 years. The CLT and modular buildings give 20–37% and 9–17% lower total life cycle primary energy use, respectively, than the concrete alternative when space heating is from CHP.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Uniben Yao Ayikoe Tettey; Ambrose Dodoo; Leif Gustavsson;In this study, we explored the effects of different design strategies on final and primary energy use for production and operation of a newly constructed apartment building. We analysed alternatives of the building “As built” as well as to energy efficiency levels of the Swedish building code and passive house criteria. Our approach is based on achieving improved versions of the building alternatives from combination of design strategies giving the lowest space heating and cooling demand and primary energy use, respectively. We found that the combination of design strategies resulting in the improved building alternatives varies depending on the approach. The improved building alternatives gave up to 19–34% reduction in operation primary energy use compared to the initial alternatives. The share of production primary energy use of the improved building alternatives was 39–54% of the total primary energy use for production, space heating, space cooling and ventilation over 50-year lifespan, compared to 31–42% for the initial alternatives. This study emphasises the importance of incorporating appropriate design strategies to reduce primary energy use for building operation and suggests that combining such strategies with careful choice of building frame materials could result in significant primary energy savings in the built environment.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.03.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2016.03.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Leif Gustavsson; Uniben Yao Ayikoe Tettey;Abstract Here, we analyse final and primary energy savings and overheating risk of deep energy renovation of a Swedish multi-storey residential building of the 1970s under climate change and consider overheating control measures to reduce cooling demand and risk of overheating. The energy-efficiency measures include additional insulation to basement walls, exterior walls, and attic floor as well as improved energy-efficient windows and doors, balanced ventilation with heat recovery (VHR), lighting, household appliances as well as water taps and shower heads. The future climates are based on the representative concentration pathways scenarios. We find that implementing improved energy-efficient windows and doors, VHR and additional insulation to external walls give significant final and primary energy savings for space heating. The total operation final and primary energy use decrease averagely by 58% and 54%, respectively when all the measures are cumulatively applied under both current and future climate scenarios. Efficient household appliances and lighting as well as appropriate overheating control measures significantly reduce cooling demand and risk of overheating. The indoor air temperature and overheating risk as well as the final energy savings are influenced by the considered climate scenarios.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117578&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Uniben Yao Ayikoe Tettey; Ambrose Dodoo; Leif Gustavsson;The effects of climate change on the final and primary energy use of versions of a multi-storey residential building have been analysed. The building versions are designed to the Swedish building code (BBR 2015) and passive house criteria (Passive 2012) with different design and overheating control strategies under different climate scenarios. Future climate datasets are based on Representative Concentration Pathway scenarios for 2050–2059 and 2090–2099. The analysis showed that strategies giving the lowest space heating and cooling demands for the Passive 2012 building version remained the same under all climate scenarios. In contrast, strategies giving the lowest space heating and cooling demands for the BBR 2015 version varied, as cooling demand became more significant under future climate scenarios. Cooling demand was more dominant than heating for the Passive 2012 building version under future climate scenarios. Household equipment and technical installations based on best available technology gave the biggest reduction in total primary energy use among considered strategies. Overall, annual total operation primary energy decreased by 37–54% for the building versions when all strategies are implemented under the considered climate scenarios. This study shows that appropriate design strategies could result in significant primary energy savings for low-energy buildings under changing climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Chiara Piccardo; Ambrose Dodoo; Leif Gustavsson; Uniben Tettey;Abstract The energy retrofitting of existing buildings reduces the energy use in the operation phase but the use of additional materials influence the energy use in other life cycle phases of retrofitted buildings. In this study, we analyse the life cycle primary energy implications of different material alternatives when retrofitting an existing building to meet high energy performance levels. We design retrofitting options assuming the highest and lowest value of final energy use, respectively, for passive house standards applicable in Sweden. The retrofitting options include the thermal improvement of the building envelope. We calculate the primary energy use in the operation phase (operation primary energy), as well as in production, maintenance and end-of-life phases (non-operation primary energy). Our results show that the non-operation primary energy use can vary significantly depending on the choice of materials for thermal insulation, cladding systems and windows. Although the operation energy use decreases by 63–78%, we find that the non-operation energy for building retrofitting accounts for up to 21% of the operation energy saving, depending on the passive house performance level and the material alternative. A careful selection of building materials can reduce the non-operation primary energy by up to 40%, especially when using wood-based materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116648&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ambrose Dodoo; Leif Gustavsson; Uniben Yao Ayikoe Tettey;In this study, we analyzed the implications of various insulation materials on the primary energy and CO2emission for material production of a residential building. We modeled changes to the origin ...
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Ambrose Dodoo; Uniben Yao Ayikoe Tettey; Leif Gustavsson;AbstractIn this study, we investigate the influence of different external wall insulation systems on the primary energy use of a case study building in southern Sweden. We vary the insulation material of the external walls from rock wool to glass wool or expanded polystyrene (EPS) to achieve different energy-efficiency standards of the building. We apply appropriate thicknesses of the different insulation materials to achieve similar thermal transmittance (U-value) of the external walls under the different energy-efficiency standards. The different options are based on the same architectural design. We calculate and compare the primary energy for production of the insulation materials and for operation of the buildings. Rock wool gives the lowest primary energy for production, followed by glass wool and EPS for each energy efficiency standard, although the difference between rock wool and glass wool is small.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.11.1056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:IOP Publishing Authors: Chiara Piccardo; Uniben Yao Ayikoe Tettey; Leif Gustavsson; Ambrose Dodoo;The existing building stock is estimated to need major renovations in the near future. At the same time, the EU energy-efficiency strategy entails upgrading the energy performance of renovated buildings to meet the nearly-zero energy standard. To upgrade existing buildings, two main groups of measures can be adopted: thermally-improved building envelope and energy-efficient technical devices. The first measure usually involves additional building materials for thermal insulation and new building cladding, as well as new windows and doors. A number of commercially-available materials can be used to renovate thermal building envelopes. This study compares the life-cycle primary energy use and CO2 emission when renovating an existing building using different materials, commonly used in renovated buildings. A Swedish building constructed in 1972 is used as a case-study building. The building's envelope is assumed to be renovated to meet the Swedish passive house standard. The entire life cycle of the building envelope renovation is taken into account. The results show that the selection of building materials can significantly reduce the production primary energy and associated CO2 emissions by up to 62% and 77%, respectively. The results suggest that a careful material choice can significantly contribute to reduce primary energy use and CO2 emissions associated with energy renovation of buildings, especially when renewable-based materials are used.
IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/225/1/012044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert IOP Conference Serie... arrow_drop_down IOP Conference Series Earth and Environmental ScienceArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1755-1315/225/1/012044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SwedenPublisher:Springer Science and Business Media LLC Authors: Ambrose Dodoo; Uniben Yao Ayikoe Tettey; Leif Gustavsson;Here, the implications of different design strategies and measures in minimising the heating and cooling demands of a multi-storey residential building, designed to the passive house criteria in Southern Sweden are analysed under different climate change scenarios. The analyses are conducted for recent (1996–2005) and future climate periods of 2050–2059 and 2090–2099 based on the Representative Concentration Pathway scenarios, downscaled to conditions in Southern Sweden. The considered design strategies and measures encompass efficient household equipment and technical installations, bypass of ventilation heat recovery unit, solar shading of windows, window size and properties, building orientation and mechanical cooling. Results show that space heating demand reduces, while cooling demand as well as risk of overheating increases under future climate scenarios. The most important design strategies and measures are efficient household equipment and technical installations, solar shading, bypass of ventilation heat recovery unit and window U-values and g-values. Total annual final energy demand decreased by 40–51%, and overheating is avoided or significantly reduced under the considered climate scenarios when all the strategies are implemented. Overall, the total annual primary energy use for operation decreased by 42–54%. This study emphasises the importance of considering different design strategies and measures in minimising the operation energy use and potential risks of overheating in low-energy residential buildings under future climates.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9719-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-018-9719-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu